Reconstructing palaeoenvironments using molluscs

Frank P. Wesselingh
Jon Todd

Molluscan Palaeoecology

Introduction

| Form and function

Environmental indicator taxa

III Communities and community palaeoecology

Taphonomy & environmental successions

Shells as archives of environmental change

VI

Extant molluscan classes

Bivalvia

Gastropoda

Cephalopoda

Polyplacophora

Scaphopoda

(Monoplacophora + "Aplacophora")

www.linternaute.com

What makes a mollusc?

Body plan (= bauplan) with 4 major regions

- Mantle dorsal epithelium with thick cuticle, secretes spicules or accretionary shell
- Head characteristic circum-oesophageal nerve ring (=brain)
- Foot ciliated ventral expansion, usually for creeping or modified for other locomotion
- Visceral mass hump with guts and gonads

Orange = Unique to molluscs

Accretionary Growth

Hypothetical derivation of body plans

Modifications of:

- Head
- Foot
- Gills

Molluscs: what are they good for ?

- Evolutionary Biology
 - excellent fossil record taphonomically durable
 - character-rich, accretionary shells: whole of ontogeny preserved
- Palaeoecology and palaeoenvironments
 - abundant in most aquatic facies
 - relationship of: shell morphology to environment
 - shell geochemistry to environment
 - accretionary growth: sclerochronology to reconstruct palaeoenvironments
- Stratigraphic utility: biozonation

Extant molluscan classes: diversity

Bivalvia 10,000 species mostly infaunal (burrowers)

Gastropoda 90,000 mostly epibenthic (crawlers)

Cephalopoda 700 mostly pelagic (swimmers)

Polyplacophora 600 epibenthic (crawlers)

550

(Monoplacophora + 30 "Aplacophora") 320 epifaunal mostly epifaunal (crawlers)

infaunal (burrowers)

www.linternaute.com

I. Introduction

Scaphopoda

Bivalvia

Two valves

Hinge

Foot

Marine

Freshwater

Includes scallops, oysters, clams

Epifaunal v infaunal

Inequivalve, equilateral

Equivalve, inequilateral

Bivalvia

Gastropoda

Cephalopoda

Polyplacophora

Scaphopoda

(Monoplacophora + "Aplacophora")

www.ladiving.smugsmug.com

Gastropoda

Single shell

Snails and slugs

Eyes

Foot

Marine, Freshwater and Land

Pliocene, Philippines

Bivalvia

Gastropoda

Cephalopoda

Polyplacophora

Scaphopoda

(Monoplacophora + "Aplacophora")

Cephalopoda

Nautilus, squid, Octopus

Tentacles

Eyes

Swimming

Marine

Bivalvia

Gastropoda

Cephalopoda

Polyplacophora

Scaphopoda

(Monoplacophora + "Aplacophora")

Chitons

8 shell plates and girdle

Marine

Rocky shores

www.mogaauto.com

Bivalvia

Gastropoda

Tusk shells

Cephalopoda

Tube like

Polyplacophora

Marine

Soft bottoms

Scaphopoda

(Monoplacophora + "Aplacophora")

Major factors controlling gross shell morphology

Feeding

Movement/Relationship to sediment

Protection

Trophic modes

Carnivore
Scavenger
Parasitic
Deposit-feeder
Suspension-feeder
Grazer
Photosymbiont
Chemosymbiont

Paul J. Morris/ www.flickr.com

www.brotherspets.com

Parasite (=browsing carnivore?)

Eulimidae

A bivalve and yet a ferocious predator: Cardiomya

© Amgueddfa Cymru - National Museum Wales.

Motility: moving around or staying put

Vagile epifaunal
Sessile epifaunal
Vagile infaunal
Sessile infaunal
Borer
Attached
Cemented
Planktonic
Nektonic

Pholas

I. Introduction source unknown

vagile mud/sand inhabitants

Living in Wood

Living in Wood ... caused Dutch dykes to burst!

Grazing on wood in the deep sea

Deepwater limpets from the Philippine Pliocene

Molluscan Palaeoecology

Introduction Form and function Environmental indicator taxa Communities and community palaeoecology Taphonomy & Environmental successions Molluscs as history books V!

Eating, moving and surviving

- Much shell morphology interpretable:
- Feeding mode
- Moving/relationship to substrate
- Defence

Thorny issue: adaptation

Spondylus

Defence

Scars of decapod attacks on whelk (Buccinum undatum, North Sea)

VI. Molluscs as history books

Direct biotic interactions can drive morphology

West et al., 1991

feeding

Batissa

II. Form and function

a suspension feeding burrower

Batissa

II. Form and function

Molluscan Palaeoecology

Introduction Form and function Environmental indicator taxa Communities and community palaeoecology Taphonomy & Environmental successions Molluscs as history books V!

Stylammatophore pulmonate snails are terrestrial indicators

Pearly freshwater mussels (unionoid) and *Corbicula* clams are freshwater indicators

Pearly fresh water mussels (Unio/Anodonta/Psilunio)

Some SE Asian freshwater snail taxa

Freshwater indicators Still / stagnant (ponds, swamps, shallow lakes)

Mangrove/Estuarine indicators

Batissa

Parahyotissa

Telescopium

Mangrove indicators

Mangrove indicators

Oysters and mussels: substrate

Reef indicators

Reef flat indicators

Tridacna

III. Environmental indicator taxa

Reef flat indicators

Clypeomorus

Plesiotrochus

Soft bottom coastal-offshore indicators

Sea grass meadow indicators

Smaragdia

Biplex

Marine soft bottom indicators

Deep water indicators

Cardiomya

Propeamussium

Oceanic indicators: pteropods

Pitfalls of taxonomic uniformitarianism:

Throughout
Mesozoic
common
soft substrate
dwellers in shallow
shelf to deeper water

Now live at 100m+ on steep fore-reef slopes and rock faces

Molluscan Palaeoecology

Introduction Form and function Environmental indicator taxa Communities and community palaeoecology Taphonomy & Environmental successions Molluscs as history books V!

Species richness across environmental gradients

Species richness across environmental gradients

3-D topography in habitat add niches and feeding tiers
Reefs, algal and seagrass meadows

Spermonde/ Sulawesi

(data from van Det, 2002)

Analytical design depends on the question to resolve

Analytical design depends on the question to resolve

Q-mode sample clustering

Friday, 7 October 2011

Assemblage 1 (Clypeomorus-Plesiotrochus)

Assemblage 7 (Yoldiella)

Yoldiella

Lateral distribution on small scale: marine lake Kakaban

Friday, 7 October 2011

Molluscan Palaeoecology

Introduction Form and function **Environmental indicator taxa** Communities and community palaeoecology Taphonomy & environmental successions Molluscs as history books VI

Taphonomy = the study of fossilization processes (after death but before diagenesis)

Hardship during life: well-preserved sharp edged fragments indicate cracking type of predation (birds, fish)

Hardship after life: Bioerosion by clionid sponge on Eocene bivalve (*Venericor planicosta*, North Sea)

After life: reworking causes abrasion (*Venerupis*, Quaternary, North Sea)

shiny (polished) rounded edges preferential areas (umbo)

Paired bivalves: died where they lived

V. Taphonomy & environmental successions

Using taphonomy in reconstruction of sedimentary successions

Antwerp

Lateral continuous shell beds in Pliocene strata

Three types of Shell beds in Pliocene deposits of Antwerp (Belgium)

A.Transgressive Shell bed (TSB): base Oorderen Mbr

Transgressive shell bed is characterized by:

- 1. admixture of ecological incompatible species
- 2. different preservation styles (colouration, bioerosion and abrasion)
- 3. gravel
- 4. scoured base

B. Highstand (condensed) shellbed (HSSB): Kattendijk Formation

Highstand shell bed is characterized by:

- 1. admixture of ecological compatible species, often in life position
- 2. similar preservation styles (little abrasion, but variable and in general abundant bioerosion)
- 3. authigenetic phosphate

This concerns a temperate situation, in tropical situations reef development can be expected if water turbidity and depth are convenient.

Sediment starvation may lead to hard ground formation

C. Depositional environmentally controlled shellbeds (DSB); Oorderen Member

- storm beds (from prograding settings)
- beached associations (from wave ravinement or in prograding settings)
 - in situ accumulations

Mediterranean Atrina

Three types of Shell beds in Pliocene de Antwerp (Belgium)

V. Taphonomy & environmental successions

V. Taphonomy & environmental successions

Data from Kidwell (1989)

Data from Kidwell (1989)

Lateral continuous shell beds

Data from Kidwell (1989)

Molluscan Palaeoecology

Introduction Form and function **Environmental indicator taxa** Communities and community palaeoecology Taphonomy & environmental successions Molluscs as history books VI

Growth increments also tell a story: seasonal growth and temperatures

MUNUM MINNIMM

Johnson et al., 2000

Aequipecten opercularis Pliocene, Coralline Crag Formation, England

VI. Molluscs as history books

Shell occurrences

Miocene facies successions from West Java From: Aswan & Ozama (2006)

- 1. nine depositional sequences in approximately 30 m section
- 2. settings dominated by marginal marine (lower intertidal to upper subtidal conditions)
- 3. some supposed fluvial conglomerates
- 4. Fossiliferous
- (nb. High angle coastal setting with strong imput of volcanoclastic deposits)
 - V. Taphonomy & environmental successions

- 1. nine depositional sequences with recurring faunal successions
- 2. sequences interpreted as cycles, and proposed to represent 42 Ka duration (orbital)
- 3. How to dinstinguish from episodic volcanoclastic imput?
- 4. what to expect of the taphonomy?

Hardship after life: Bioerosion by clionid sponge on Eocene bivalve (Venericor planicosta, North Sea)

VI. Molluscs as history books

Conclusions

- stable isotopes are very useful in the reconstruction of past environments and processes on a range of temporal and lateral scales
- applications include reconstruction of aquatic chemistry (e.g., paleosalinities), processes (e.g. water mixing), habitats and palaoeclimate regimes
 - diagenesis should be taken into account in such studies

Molluscan Palaeoecology

Introduction Form and function **Environmental indicator taxa** Communities and community palaeoecology **Taphonomy** Molluscs as history books V!

Show me your shell, I will tell you where you grew up

Reconstructing palaeoenvironments

using molluscs Frank P. Wesselingh

Jon Todd

