

Meeting at Utrecht University, Tuesday 4th October 2011:

Origins of the South East Asian Marine Biodiversity Maximum

Preliminary results of ⁸⁷Sr/⁸⁶Sr analysis from corals and molluscs, East Kalimantan, Indonesia:

Implications for Chronostratigraphy

Sample Location (NTA 2)

Analysed samples from Bontang and Samarinda

Samples from Bontang (NTA 2)

TF102_BW_1: Complete Brain Coral, Bontang, Garden Hotel

before cleaning

TF108_BW_6A: Tridacna, Bontang, Garden Hotel, Tridacna Gully

TF109_WM_A: Bivalved Tridacna, Bontang, Garden Hotel

TF79_BW_1: Fragments of a large Tridacna, Samarinda, Batu Putih, Batu Cermen (Tridacna Site)

Samples from Samarinda (NTA 2)

TF50_SR_0172: Oyster, Samarinda, Stadion Palaran

TF58_BW_1: Oyster, Samarinda, Badak

Results of Strontium Isotope Analyses

Preliminary ⁸⁷Sr/⁸⁶Sr Results - Samples from Samarinda and Bontang

How can we obtain ages from these data?

Variation of ⁸⁷Sr/⁸⁶Sr through the Phanerozoic time after Mc. Arthur and Howarth (2004).

Strontium Isotope Seawater Curve

Variation of 87Sr/86Sr through the Phanerozoic time after Mc. Arthur and Howarth (2004).

Variation of ⁸⁷Sr/⁸⁶Sr through the Phanerozoic time after Mc. Arthur and Howarth (2004).

Time-dependent variations of ⁸⁷Sr/⁸⁶Sr ratio of seawater throughout the Phanerozoic, but

Strontium ratio of seawater measured at any given time is considered to be globally uniform stable –

(Sr-residence time: 10⁶ a; Sr-mixing time 10³ a)

Change in the Sr isotope ratio of the seawater -Response to geological changes

Why does the Srisotope ratio of sea water vary at all? Isotopic evolution of strontium in the oceans is a record of the geological activity of the earth on a global scale The Sr isotope signature of seawater is derived from the contribution of the

Strontium isotopes in sedimentary rocks throughout Phanerozoic time (modified from Veizer (1989).

Comparison with estimated ages obtained from Biostratigraphy

Ages SIS: Messinian - Tortonian

Ages SIS: Burdigalian

23.0

Good agreement with between ages based on field observations of LBF and SIS

Further close collaboration between (Magneto)-Biostratigraphy and Geochemistry is required.

How reliable are our ages obtained via SIS?

Limitations of the SIS - 1

⁸⁷Sr/⁸⁶Sr ratio of the samples must be unaffected by Diagenetic Alteration

because

Diagenetic processes (e.g. recrystallization of aragonite to calcite / secondary aragonite precipitation)

Change/Overprint of the original geochemistry resulting generally in unreliable pelaeoenvironmental reconstructions

effect also the Sr isotpe ratio stored in the carbonate minerals

How can we recover material effected by alteration/ diagenesis?

X- ray diffraction analysis (XRD) analyses for quantification of aragonite and calcite concentration

Results of

X-ray diffraction analysis (XRD)

X-ray diffraction analysis (XRD) of sample TF102_BW_1A

BW_X_5 (TF102_BW_1A)

BW X

X-ray diffraction analysis (XRD) of sample TF79_BW_1A

BW_X_3 (TF79_BW_1A)

HW X

X-ray diffraction analysis (XRD) of sample TF79_BW_1B

BW_X_4 (TF79_BW_1B)

BW X

Existing relation between diagenesis/ recrystallisation and Sr isotope results?

Preliminary "Sr/"Sr Results - Samples from Samarinda and Bontang

Correlation between ⁸⁷Sr/⁸⁶Sr and amount of Aragonite

- No immediate link detectable , but also very small sample volume

- More analysis required

Thorough pre-analytical determinations are essential for obtaining reliable data

THROUGHFLOW

These includes:

- X-ray diffraction analysis (XRD) - Quantitative estimates of aragonite and calcite concentration (only suitable to differ between aragonite and Calcite), but not to suitable differ between primary aragonite and secondary aragonite

 Polarised Light Microscopy (PLM) combined with Scanning Electron Microscopy (SEM) – to recover secondary formed araogonite

Recovering (micro)areas in a sample which are the most suitable for analyses – areas of excellent preservation my also exist in a strongly altered sample!

Limitations of the SIS - 2

SIS works only for marine carbontates (e.g. biogenenic carbontes) produced under open marine conditions

No reliable results from biogenic carbonates in estuarine milieu

freshwater Input

Overprint strontium isotope ratio of seawater

Example Oysters from Samarinda

Preliminary ⁸⁷Sr/⁸⁶Sr Results - Samples from Samarinda and Bontang

⁸⁷Sr/⁸⁶Sr studies of well preserved Miocene coral and molluscs promising tool for age determinations

High precision chronostratigraphic determination are possible,

as

most favourable conditions exist for samples of post Eocene age (<55-33Ma)

THANK YOU

First 87 Sr/86 Sr Results

LDN1 – Coeloria CF. MAGNA Gards O. Indie, Borneo, Sangkoelirang Baai Coll Rutten (Sungai Gelingut... box) Original ID - 43079

BW_X_13 LDN2 - Coeloria rustica Midden Pleistocene Ind. Java, Madieon, Riv. Gedeh Gank. Coll. Umbgrove, Juni 1955 (Platygyra box) Original ID - 78173 inches Society for Sedimentary Geology www.sepm.org

Correlation between Sr Isotope Ratio and Amount of Aragonite

Calcite cements : warm temperature anomalies (smaller Sr/Ca ratios