Bryozoans as palaeoenvironmental indicators Paul D Taylor, NHM, London

invertebrate phylum

- invertebrate phylum
- >6000 living species

- invertebrate phylum
- >6000 living species
- mainly marine

- invertebrate phylum
- >6000 living species
- mainly marine
- intertidal to 8000 m depth

- invertebrate phylum
- >6000 living species
- mainly marine
- intertidal to 8000 m depth
- suspension feeders

- invertebrate phylum
- >6000 living species
- mainly marine
- intertidal to 8000 m depth
- suspension feeders
- all colonial

- invertebrate phylum
- >6000 living species
- mainly marine
- intertidal to 8000 m depth
- suspension feeders
- all colonial
- usually sessile, benthic

- invertebrate phylum
- >6000 living species
- mainly marine
- intertidal to 8000 m depth
- suspension feeders
- all colonial
- usually sessile, benthic
- most have CaCO₃ skeletons

- invertebrate phylum
- >6000 living species
- mainly marine
- intertidal to 8000 m depth
- suspension feeders
- all colonial
- usually sessile, benthic
- most have CaCO₃ skeletons
- Ordovician-Recent

Bryozoan colony-forms

Robert Hooke's illustration of *Flustra* from *Micrographia* (1665)

Abundant

Upper Ordovician Cincinnati, USA

rock-forming

Abundant

Upper Ordovician Cincinnati, USA

rock-forming

Upper Cretaceous Maastricht, Netherlands

> 600 bryozoan species

Bryozoans as palaeoenvironmental indicators

- 1. modern environments with bryozoans
- 2. colony-form analysis
- 3. branch diameter as a depth indicator
- 4. zooid size as a temperature indicator
- 5. palaeolatitudinal distribution of bryozoan carbonates through time

[skeletal geochemistry]

1. modern environments with bryozoans

Freshwater bryozoans

Low diversity Unmineralized

Recent bryozoan species diversity increasing with depth English Channel (Grant & Hayward 1985)

Bryozoan assemblage species richness vs depth in the eastern (black dots) and western (white dots) North Atlantic

Clarke & Lidgard 2000. Journal of Animal Ecology 69: 799-814

2. colony-form analysis

Encrusting: Porella

Dome shaped: 'Dianulites'

Encrusting: Porella

Dome shaped: 'Dianulites'

Encrusting: Porella

Narrow branched: Arcanopora

Dome shaped: 'Dianulites'

Robust branched: Heteropora

Narrow branched: Arcanopora

Dome shaped: 'Dianulites'

Encrusting: Porella

Robust branched: Heteropora

Narrow branched: Arcanopora

Dome shaped: 'Dianulites'

Encrusting: Porella

Friday, 7 October 2011

Robust branched: Heteropora

Narrow branched: Arcanopora

Dome shaped: 'Dianulites'

Foliose: Pentapora

Fenestrate: Chasmatopora

Friday, 7 October 2011

Robust branched: Heteropora

Narrow branched: Arcanopora

Encrusting: Porella

Dome shaped: 'Dianulites'

Foliose: Pentapora

Fenestrate: Chasmatopora

Articulated: Cellaria

Robust branched: Heteropora

Narrow branched: Arcanopora

Palmate: *Phaenopora* Friday, 7 October 2011

Cheilostome bryozoan colony-forms (from Moissette 2000)

can these colony-forms be used as environmental indicators?

Cheilostome bryozoan colony-forms (from Moissette 2000)

can these colony-forms be used as environmental indicators?

Sea-bed topography around New Zealand

bryozoan meadow, 100 metres Otago Shelf, New Zealand

sediment from bryozoan meadow

Different colony-forms represent alternative functional adaptive strategies

Encrusting colonies

Multiserial sheet

Uniserial runner

37 zooid encrusting colonies on substrates divided into equal-sized squares

sheet

runner

37 zooid encrusting colonies on substrates divided into equal-sized squares

sheet

runner

Runner 'samples' more squares of substrate and spreads a greater distance from origin (fugitive strategy) 37 zooid encrusting colonies on substrates divided into equal-sized squares

sheet

runner

Runner 'samples' more squares of substrate and spreads a greater distance from origin (fugitive strategy) Sheet is compact and better able to defend space ('confrontational strategy') Percentage of colony-forms in bryozoan assemblages from shallow and deep stations in Spitsbergen

?reflecting decreasing food resources with depth

Fenestrate colonies (reteporiform)

- 'traditionally' regarded as adaptation to strong currents
- but colonies can be found in slow flow regimes too (e.g. caves)

Chasmatopora (Ordovician, Estonia)

Articulated colonies

(cellariiform)

Cheilostome *Cellaria* (Recent, Croatia)

• elastic nodes allow flexure in strong currents

 but colonies also found in areas of relatively high sedimentation and weak currents – sediment can be shaken off branches

Crisia (Recent, Brazil)

Free living colonies (lunulitiform)

Cupuladria (Miocene, France) *Cupuladria* (Pliocene, England)

- able to live on fine sediments (fine sand, silt and mud) where no large substrates are present
- colonies can dig themselves out if buried

adapted for living on fine-grained, unstable substrates

 particular colony-forms are seldom if ever restricted to one environment; sometimes almost all major colony-forms can be found together

 particular colony-forms are seldom if ever restricted to one environment; sometimes almost all major colony-forms can be found together

 not enough known about factors controlling colony-forms in modern environments

- particular colony-forms are seldom if ever restricted to one environment; sometimes almost all major colony-forms can be found together
- not enough known about factors controlling colony-forms in modern environments
- colony-forms represent alternative functional adaptive strategies that may be viable in many different environments

- particular colony-forms are seldom if ever restricted to one environment; sometimes almost all major colony-forms can be found together
- not enough known about factors controlling colony-forms in modern environments
- colony-forms represent alternative functional adaptive strategies that may be viable in many different environments
- representation of different colony forms has changed through the Phanerozoic

3. branch diameter as a depth indicator

Branch diameter variation within coral species as depth indicator

shallow site

intermediate site

Coral

Pocillopora damicornis (see Kaandorp 1999)

Branching bryozoans (ramose, dendroid)

Diaperoecia. Recent

Pleistocene. Setana Fm Kuromatsunai, Japan

Heteropora pacifica Puget Sound, USA (Schopf et al. 1980) three cyclostome species:

Cinctipora elegans Diaperoecia purpurascens <u>Erksonea</u> sp.

Taylor, Kuklinski & Gordon (2007)

Branch diameter does correlate with depth

Branch diameter does not correlate with depth

Friday, 7 October 2011

Branch diameter does not correlate with depth

4. zooid size as a temperature indicator

Cheilostome bryozoan zooid size is inversely correlated with ambient temperature at time of budding

Cupuladria exfragminis

non-upwelling (warm) zooids

Okamura et al. 2011

upwelling (cold) zooids

Cribrilina cryptooecium

Cold Recent British

Large zooids

Chamber = 10 Pa

Warm Coralline Crag (Pliocene)

Spot Size = 500

12 mm

Small zooids
MART analysis using within-colony variation in zooid size

MART = <u>m</u>ean <u>a</u>nnual <u>r</u>ange in <u>t</u>emperature

Aaron O'Dea

Conopeum seurati Avonmouth, England

Conopeum seurati Avonmouth, England

summer zooids

Conopeum seurati Avonmouth, England

summer zooids

winter zooids

zooid size

seawater temperature

summer

winter

summer

zooid size			
seawater temperature			
	summer	winter	summer

zooid size			
seawater temperature			
	summer	winter	summer

zooid size			
seawater temperature			
	summer	winter	summer

• randomly select 20 zooids

- randomly select 20 zooids
- avoid early zooids and areas of irregular growth

- randomly select 20 zooids
- avoid early zooids and areas of irregular growth
- measure zooid length and width

- randomly select 20 zooids
- avoid early zooids and areas of irregular growth
- measure zooid length and width
- calculate length x width (= area proxy)

- randomly select 20 zooids
- avoid early zooids and areas of irregular growth
- measure zooid length and width
- calculate length x width (= area proxy)
- calculate CV (= SD/mean x 100)

- randomly select 20 zooids
- avoid early zooids and areas of irregular growth
- measure zooid length and width
- calculate length x width (= area proxy)
- calculate CV (= SD/mean x 100)
- repeat in at least 4 more colonies

- randomly select 20 zooids
- avoid early zooids and areas of irregular growth
- measure zooid length and width
- calculate length x width (= area proxy)
- calculate CV (= SD/mean x 100)
- repeat in at least 4 more colonies

29 Recent cheilostome species

MART = -3+0.745(b)

where (b) is the mean intracolony CV of frontal area (length x width)

Contrasting seasonality between Caribbean and Pacific

O'Dea 2003

Early-Mid Pliocene North Atlantic

Knowles et al. 2009

Early-Mid Pliocene North Atlantic

5. palaeolatitudinal distribution of bryozoan carbonates through time

Uniformitarianism

'Present is the Key to the Past'

Charles Lyell (1797-1875)

Global distribution of carbonate deposition at the present-day

Global distribution of carbonate deposition at the present-day

Palaeolatitudinal distribution of bryozoan-rich sediments

• post-Palaeozoic are nearly all non-tropical

- post-Palaeozoic are nearly all non-tropical
- but Palaeozoic are pan-global

Friday, 7 October 2011

Palaeozoic

post-Palaeozoic

Cincinnatian Series -Upper Ordovician, USA Tropical carbonate

Coralline Crag -Pliocene, England Temperate carbonate Bryozoan assemblage species richness vs latitude in the eastern (black dots) and western (white dots) North Atlantic

- no gradient of increasing species diversity into tropics (cf. many other phyla)
- bryozoans can be diverse in the tropics but have a relatively low biomass (as in Indonesian Cenozoic)

Clarke & Lidgard 2000. Journal of Animal Ecology 69: 799-814

Friday, 7 October 2011

Postscript: analysis of annual growth bands as proxy for phytoplankton productivity in the Antarctic

Friday, 7 October 2011

 bryozoans at the present day inhabit many aquatic environments but are most diverse on continental shelves

- bryozoans at the present day inhabit many aquatic environments but are most diverse on continental shelves
- colony-form analysis must be treated cautiously

- bryozoans at the present day inhabit many aquatic environments but are most diverse on continental shelves
- colony-form analysis must be treated cautiously
- in some species relative branch diameter can be used as a palaeobathymetric indicator

- bryozoans at the present day inhabit many aquatic environments but are most diverse on continental shelves
- colony-form analysis must be treated cautiously
- in some species relative branch diameter can be used as a palaeobathymetric indicator
- zooid size correlates with temperature at time of budding and can be used to indicate relative palaeotemperature and also MART

- bryozoans at the present day inhabit many aquatic environments but are most diverse on continental shelves
- colony-form analysis must be treated cautiously
- in some species relative branch diameter can be used as a palaeobathymetric indicator
- zooid size correlates with temperature at time of budding and can be used to indicate relative palaeotemperature and also MART
- the latitudinal distribution of carbonate-producing bryozoans has changed through time

