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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

1) Effects of "Throughflow’
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for
foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments
-Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta
6) Palynology and environments
-Coastal plain and mangroves
-Mangroves in temporal perspective
-Upper coastal plain and lacustrine deposits
-Coals
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

1) Effects of "Throughflow’
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1. Effects of "Throughflow’

The sills between the Sulu Sea and the Pacific prevent deep cold
Antarctic bottom water from entering the Makassar Straits. This
prevents deep water foraminiferal associations associated with
deep cold Antarctic water from entering the Straits, and
consequently it is not possible to interpret water depths in
deeper parts of the Straits using depth-related foraminifera
(1500m- 2500m) in the manner used by micropalaeontologists in
Pacific-type ocean-margin successions.
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Note:

The water masses
in Makassar Strait
are derived from
the Pacific, and
controlled by

the Mindanao sill,
the Mangkalihat sill
has no effect.

Sill depth about 2400m

Sill depth about 650m

This sill controls
Water flow into
Makassar Straits,
Sill depth 1629m

B

Sill depth 2500m
I
 Sill depth 2000m

i

Subsea Topography in Areas of Indonesian

Throughflow
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Disteibution and temperature of
Antarctic bottom water

cannot enter Indonesian basins
due to sills
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Distribution and 1emperature of
Antorctic bottom waler

connol enter Indonesian bosins
due 10 sills

TEMPERATURE

-
~
-

1.

dN M fimum
! generated .
SR G R By cocstel upmeting dong  Line of profile
Western Pacific SR
0; pumol/kg

W e v

An oxygen-deficient layer is characleristic of each of the oceans, due 1o upwelling
around their marging induced from surface vands, such as the Troades

These are reflected in the fossil record by blooms of certain groups of
foraminifera Such blooms are not seen in Makassar since there 15 no upwelkng,
and no oxygen-minimum layer,

Pacific Water Masses
N-S Profile Through Pacific PALYNOVA
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Intermediate and
deep currents

Surface currents

Dasp cold water, bulow S00m,

Tatermadiate’ low and Mgh selinity
intervels, 100.500m
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Pocifie water is drawn inte Sulawesi Sea

From beth N and S depending on eddy situation,
which is seasonal

Wetar flows +
i= surmm direction

The Indonesian Throughflow
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ing both monzesm
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Temperature and oxygen profiles
Across Banda Sea are a good proxy
for Sulawesi Sea and Makassar Strait
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Mixed upper layer

Temp, ax and salinily homogenous obave shorp

galinily increase. 1525 degr; Sa34.4pMil; Ox > 4m /L
Barrier layer

Steep grodient toward higher solnilies

High salinity layer

Relatively high salnities, higher thon in any

other loyer, S>34.6pMmI/L

Intermediate layer

Salinity about 35.6pMil, Ox about 3ml/L, temp
grodien! decreasing dawn 16 12 degr

Low salinity layer

Salinity falls sharply toa below 35 5pMil, steep temp grodient in
upper poart, ledd in lower porl, decr 108 degre ol bose

Sulawesi Sea deep water
Deep cold waler, less thon 8 degr, 1o 3.6 al bose

Makassar Strait Water Masses
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Comparison of Central
Pacific water mass
Profile and typical
Profile from Makassar
Strait
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Temperature, salinity and oxygen profiles
from Station 11, East of Mangkakhal
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RESPONSE OF BENTHIC FAUNA WITHIN A SILLED BASIN

Watermass B
OPEN MARINE BASIN

(H.C. Olson) Biofacies A Q Biofacies C 2 GPOIOWBAl MAB 040301
Biofacies B@  Biofacies D ¥
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

2) Sequence model
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Sea level change and climate change - background
Correspondence of sea level and climate change since last glaciation
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Sea level rise and fall

‘Global’ 180 curve
Martinson et al (1987) O Stage
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Sea level rise and fall

‘Clobal’ 180 curve
Martinson et al (1987) O Stage
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e From Posementier and Allen 1999
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Rate of
Eustatic
Change

From Posementier and Allen 1999

Eustasy

Subsidence

Rate of
Subsidence

Rate of |
Relative
Sea-Level | | |

Change

@
Figure 2.3 @ t - T

Relative 'CJ
Sea Level . T

Relative sea level model
needs modification

|

PALYNOVA

Friday, 7 October 2011




9.a Sequence biostratigraphy

Age in Ka
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Sea level change and the palynological record
Attaka well, Mahakam Delta (Morley and Morley 2010)
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Classic Sequence Stratigraphic Model of Vail et al and Van Wagoner et al. (1988)

e &
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[ ] Coastal Plain (] Marine v;f::e; I'ggs)
L] Estuarine/Fluvia I Deep-Water Sands  \ia, Wagoner et al (1988)
[ Shoreface/Deltaic Sands

PALYNOVA

Friday, 7 October 2011




Sea Level

Kutei Basin typical sequence, sediment supply = subsidence, c:ggr'adafionalQ

Reef on Cycle 2 Shelfl Edge
Cycle 2 Lowstand Shelf Edge
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Progradational Interval

Transgressive Surface

Transgressive Interval (TST): Lowstand

(Very Thin Shales +

Carbonate Buildups) Condensed Interval
(TST+HST+FSST)

Differences with the classic “Vail et al” sequence
stratigraphic model include

« Stratal Patterns are dominated by Progradation on the Shelf.
* No Onlapping Packages on the Slope
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Classic Sequence Framework

___-Channel-Levee
Complex

\~

Sequence Boundary |

Amalgamated

Channels
Basin-Floor—
Transgressive Syst Tract Fan
- sg ystems Trac

End of rapid sea-level rise & transgression r --I

Condensed shale and shelf carbonates Early Lowstand Systems Tract

predominate Sand-rich delta progrades past shelf edge
=] Falling Stage Systems Tract

Slow sega-leve?fan_ 5 = Late Lowstand Systems Tract

subsidence & progradation Mud-rich channel-levee complexes

dominate on slope & basin floor

« Kutei Basin Strata can be put into a Classic Sequence Stratigraphic Framework,

« However, It is awkward because Sequence Boundaries are Difficult to Recognize
on the shelf, and Correlate from Shelf to Basin

« Sequence Boundaries Must Pass through Prograding Clinoforms
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- . M toom

End of Rapid Sea-
Level Rise & Transgression:
Start of Highstand/Progradation

Slow Sea-Level Fall,
Subsidence & Progradation

Sand-rich Early “Lowstand™
Lowstand Delta Progrades
Over Underlying Shelf Edge

Late Lowstand:
Mud-rich Channel-Levee Complexes
Dominate on Slope & Basin Floor
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Shelf Deep Water
HST
_ - Condensed MFS
TST Interval
7 TS TST
Lowstand
Deposition LST
~ Progradationa ‘ L D W
Fackage _ Kutei _ HST
Condensed
| _Cycle ioteresl MFS Classic
Sequence
Ll . sl TST
Progradational é::::m SB U
Rackeas HST

Lowstand Deposits in Deepwater
Correlate to The Final Progradations

Condensed Intervals in Deepwater of Lowstand Shelf Edges

Correlate to Transgression and
Early Progradation on the Shelf
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

3) Microfossils and depositional environments

PALYNOVA

Friday, 7 October 2011




Environment interpretation

- Uniformitarianism

The guiding principle for nearly all paleoenvironmental
reconstructions

HOWEVER:

* Modern ocean = highstand of sea level.

- This can be resolved by using Quaternary data as
analogues which cover last glacial

» Loss of information through taphonomic and
diagenetic processes.

6 1 PALYNOVA
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Paleoenvironmental information derived from
microfossils:

+ sedimentary facies - forams, nannos, paly

*  Salinity - forams, paly

* ocean temperature - forams

+  Climate - paly (forams)

» water mass characteristics - forams

*  Productivity - upwelling - forams (nannos)

+  Water depth, and sea level change - forams, paly

<G R e R R R

Palynology main tool ... FOraminifera main tool

(Suptraition s wprstaisl)

Yool rangd Infenaad 20ne
e revilic Jone

Dopth vanes weh rorer e o
Ot e nertc pone § TG ok 0

b tange
| Roctve Lar wiather > ™
weren Do per
At Sopth nah 0
-10 10 -15m - gy 200
o ""T;(':?' one : : : S0
J A0m Fosthon of owygen
MANTLED SO0
Uppar (vanabie)
Wase -we 000OM
1500 bty e 1500M
e
| owey Daltwd 2one
AT age dopth paisdas

of workd ocean 3./ 50m
~4000em )
ANy
(‘uv:r Top o recend
cHlcnan carbonale

compansabon Gogdh

Hadtad {CCL)

oy (varios with e ude

and gookopcal erw)

A0

6.2

M-t e
lomperature (YC)
- 9 15

21

thermocine
layor

Mixed, or

surface layer
----- —
Permanent

-

Om

100m

1000m

6000m

Friday, 7 October 2011




Paleoenvironmental information derived from
foraminifera

+ Percent planktonics
+  Species diversity
+ Test-type ratios - planktonic/calc benthonics/aggluts

+  Taxonomic approach

- Environment requirements of specific taxa
* Water depth-related/substrate-related etc

+ Eco-taxonomic approach (mainly based on genera)

i -Increasing % planktonics =

‘s Denthosse

O=

¢ 30 7 bentheaic
o Masimum nemBer ol species

200@ O S manimem aumber of specimens 200=

CALMeOuUs sPAcies predominate

INCmanimun aumber aggiutinatec geners

3000=-

Approximate location of various henthonic foraminifera traits on the sea floor.

6.3
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

4) Logging techniques and eco-taxonomic groupings for

foraminifera
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4.b Microfossil processing and logging techniques

Foraminifera

+ Sample washing and preparation
- take 50 gr (measured weight) of unwashed sample (sometimes light washing
is necessary)

- Wash through sieve to remove clay grade sediment and mud

- add Hydrogen peroxide solution to disaggregate matrix
- continue/repeat until all rock fragments are disaggregated

Common problem, samples from deeper in well are more indurated so rock
frags left in residue, and fewer forams seen in washed residue

4 6 PALYNOVA
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4.b Microfossil processing and logging techniques

Foraminifera

Sample splitting method

4 7 Split sample Residue for logging PALYNOVA
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Water depth interpretation using foraminifera
Planktonic benthonic ratios 3
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Water depth interpretation using foraminifera
Planktonic benthonic ratios
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Planktonic/benthonic and test type ratios
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Taxonomic approach (Murray 1974) TR
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Figure 1or Summary of the range of diversity in
different environments.

Mainly follows Murray 1974
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Eco-taxonomic approach (mainly based on genera)

Foraminiferal eco-taxonomic groups

Planktonics

*Subdivide benthonic foraminifera according to main eco-taxonomic groups

* Agglutinated simple spiral (planispiral) foraminifera -
- diverse habitats with limited carbonate availability

* Small rotaliids
- shallow photic zone variable salinity

* Miliolids

- shelf hypersaline settings when common
* Larger forams

- clear water shelf settings in photic zone
* Misc shelf group

- diverse habitats in stenohaline settings on shelf (and poss upper slope)

* Oxygen deficient group

- muddy substrates poor in oxygen (mainly upper slope)
» 'Deep/cold’ group

- prefer water depths below 150m
» Primitive agglutinated

- typically tubular forms - tolerate strongly restricted environments

» Complex agglutinated

- common in 'normal’ slope settings
¢ 37 PALYNOVA
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3.b Eco-taxonomic groups

Globigerinoides - &

P'anmon ics Globigerinas ;’T_’- —
Globorotalia | | — j—-
Planktonics - L. B —
Planispiral Trochospird,_| B —

Hastgerina micra

Streptospiral

N
Orbulina universa

Globigerina bulloides

3.19 Living planktonic foraminifera showing pseudopodia
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3.b Eco-taxonomic groups

Miliammina fusca

Foraminifera Agglutinated

Agglutinated simple spiral (planispiral) foraminifera -
- diverse habitats with limited carbonate avail
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3.b Eco-taxonomic groups

Small rotaliids - shallow photic zone variable salinity
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3.b Eco-taxonomic groups

Miliolids
- shelf hypersaline settings when common

Taa range intertida zore
Depth varien with =S Fer rer i rone
’
e e Dby gt 2000

Quinqueloculina spp

s

Spireloculina ornata Quinqueloculina sp

318 PALYNOVA
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3.b Eco-taxonomic groups

Larger forams
- clear water shelf settings in photic zone

+  Larger foraminifera, large planispiral foraminifera, with algal symbionts. typical
genera Lepidocyclina, Nummulites, Discocyclina, Miogypsina, Flosculinella, can be

L1 L] used for approximate age interpretation through Middle Eocene to Middle
“/X Miocene
: Toadl range Infertda zore ™
Depth varien with et rer b c zone perery
has range AN Ot & nerkic 3000 LA AR
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Lepidocyclina pustulosa Nummulites sp

~A000m
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3.b Eco-taxonomic groups

Misc shelf group
- diverse habitats in stenohaline setting
on shelf (and poss upper slope)
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3.b Eco-taxonomic groups
Oxygen deficient group

- muddy substrates poor in oxygen (mainly upper
slope)

Fer rorlic rone

Biftriserial Uvigenina basirotunda

3 2 1 Brizalina alata PAL yNOVA
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3.b Eco-taxonomic groups

'‘Deep/cold’ group
- prefer water depths below 150m
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3.b Eco-taxonomic groups

Primitive agglutinated
- typically tubular forms - tolerate strongly
restricted environments

Single chambered - simple tubes - typical genera Bathysiphon

3 23 PALYNOVA
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3.b Eco-taxonomic groups

Spiroplectammina spectabilis Textularia stanneri

Complex agglutinated
-common in ‘'normal’ slope settings

‘Biserial - Textularia, Valvulina, Eggerella etc

4

Siphotextularia concava Valwlina flexilis

Textularia sp Textularia gramen

PALYNOVA

2 Vulwlina arenacea Ammobaculites
. agglutinans
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

5) Characterisation of depositional environments

PALYNOVA
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

5) Characterisation of depositional environments
-Shelf environments

PALYNOVA
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6.43
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6 Shelf environments

- shallow shelf well - depth groups
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UQD1 arenac simple spiral
UD2 small rotalids

UQ3 larger

U4 miliokds

UD5 misc. shelf

UQB deeplcold

UD7 oxygen deficient
U8 arenac primitive
UQS arenac complex
U10 unplaced

PALYNOVA
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6 Shelf environments

middle and outer shelf
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UO1 arenac simple spiral
U02 small rotalids

U03 larger

U04 miliclids

U0S misc, shelf

U06 deeplcold

UO7 oxygen deficient
U08 arenac primitive
U0S arenac complex
U10 unplaced
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

5) Characterisation of depositional environments

-Slope environments

PALYNOVA
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6.43
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6 Deep water - water depth interpretation using foraminifera
Planktonic benthonic ratios
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Deep water - water depth

interpretation using foraminifera
Planktonic benthonic ratios
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6 Deep water environment interpretation
Foraminiferal eco-taxonomic groups
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6 Deep water - environment interpretation

Foraminiferal eco-taxonomic groups

Total
__assemblage

J1 arenac simple sory
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03 larger
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6 Deep water

Foraminiferal eco-taxonomic groups

JHLTH

6.24

environment interpretation
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Downslope transport and turbidites

Middle bathyal section

Calcareous forms
Arenaceous forms

_~ dominate shale

intervals

N

~
Shelf forams

preserved in
- turbidites
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

5) Characterisation of depositional environments

~-Carbonate dissolution issues

PALYNOVA
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Mid slope well, palynological indicators

1) Mangroves POLLEN/SPORES
2) Climate sensitive groups &
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Carbonate dissolution and sedimentation rates>

Dissolution scenarios

1 Normal marine - rich and diverse calcareous assemblages
2 'In sediment’ dissolution - may be barren of foraminifera
3 'In water’ dissolution - contain common arenaceous forams
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Carbonate dissolution issues

Normal marine setting

Modern Makassar
Shelf Straits
Margin

95% planktonics

Foram abundance

Lysocline

Some carbonate
dissolution

CCD

PALYNOVA

Friday, 7 October 2011




Carbonate dissolution issues

Normal marine setting 'in sediment’

dissolution
Modern Makassar
Shelf Straits
Margin

Abundant organic influx

Lysocline

Some carbonate
dissolution

CCD

PALYNOVA
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Carbonate dissolution issues

Normal marine setting pronounced 'in
sediment’ dissolution

Modern Makassar

Shelf Straits
Margin '

Lysocline

Some carbonate
dissolution

CCD

PALYNOVA
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Carbonate dissolution issues

Carbonate dissolution setting

Modern Makassar
Shelf Straits
Margin

U bathyal - 95% planktomics Foram sbundance

M bathyal
Lysocline
Lr bathyal
Some carbonate
dissolution
CcCD
PALYNOVA
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Carbonate dissolution issues

Carbonate dissolution setting 'in water’

dissolution
Modern Makassar
Shelf Straits
Margin

Foram sbundance

Carbonate dissclution on upper slope

M bathyal
Lysocline
Lr bathyal
Some carbonate
dissolution
CcCD
PALYNOVA
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Carbonate dissolution issues

Carbonate dissolution setting pronounced
'in water’ dissolution

Modern Makassar
Shelf Straits
Margin

Superabundant organic influx
Carbonate dissolution on upper
slope, extends to shelf

Foram sbundance

M bathyal
Lysocline
Lr bathyal
Some carbonate
dissolution
CcCD
PALYNOVA
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DD, DH and DL Percent arenaceous
Q 20 40 60

500

1000

1500

Sedimentation rate, m/Ma

2000

. 2500
This tells us:

1) Acmes of arenaceous forams are probably not condensed sections
2) Divergences from this trend probably identify misinterpretations or

periods of erosion

80 100
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Well A and Well B

The main control on microfessil deposition is carbonate dissolution, which displays three different
levels of intensity through the succession. Different biostratigraphic models are needed to explain
sequence characteristics in each of these intervals

Minimal dissolution,
foram abundance
acmes coincide eith
transported foram
minima and condensed
sections

Some dissolution, in
this interval

Abundant dissolution in
this interval, calcareous
foraminifera are
essentially preserved in
turbidite flows; some
condensed sections
may be virtually void of
foraminifera

’ALYNOVA
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Well A and Well B

The main control on microfessil deposition is carbonate dissolution, which displays three different
levels of intensity through the succession

This is shown particularly clearly by plotting foram arenaceous vs calcareous forams as a %. .

Minimal dissolution,
foram abundance
acmes coincide eith
transported foram
minima and condensed
sections

Some dissolution, in
this interval

Abundant dissolution in
this interval, calcareous
foraminifera are
essentially preserved in
turbidite flows; some
condensed sections
may be virtually void of
foraminifera

’ALYNOVA
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Plot shows foraminiferal abundance

Acmes (arrowed) suggest intervals of more condensed deposition, However, few of these acmes really
reflect true condensed sections, in DPP/DLA1, it is possible that true condensed are present but not
reflected by strong foram acmes, in DL2, arenaceous acmes seem to just precede the condensed section,
in DLS and MDB, foram acmes contain fewer transported forams in terms of %, but increased transported
forams in terms of abundance This pattem s not fully understood but Ilkely suggests that even the MDB

Line thickness
shows approx
intensity of F
condensed | #———
intervals

rTyms
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Oldazb 740Ma

CI
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DPP2 cond sechon
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Plot shows foraminiferal abundance

Acmes (arrowed) suggest intervals of more condensed deposition, However, few of these acmes really
reflect true condensed sections, in DPP/DLA1, it is possible that true condensed are present but not
reflected by strong foram acmes, in DL2, arenaceous acmes seem to just precede the condensed section,
in DLS and MDB, foram acmes contain fewer transported forams in terms of %, but increased transported
forams in terms of abundance. This pattern is not fully understood, but hkely suggests that even the MDB

interval with slow accumulatiop rates is egsenum 3
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For instance, the arenaceous acme in DL2 in well A occurs just below
the gamma acme in this interval. It is likely that with the onset of the
condensed interval, conditions are favourable for arenaceous foram
preservation, but at the acme of the condensed interval, increased
dissolution/ anoxia result in reduced foraminiferal preservation
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Carbonate
dissolution scenarios

Seno well
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Northern inboard to outboard: 'DL’ Carbonate
dissolution event
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Differentiation of Systems Tract in Slope Setting Using
Foraminifera and pollen a) low dissolution setting

Percentage presentation
Trang bentnics  SIope benthes Planidones

Foram groupings used to drerentiate sequences in a slope setting

Differentiation of Systems Tract in Slope Setting
Using Foraminifera and pollen b) High dissolution

Carbonate
dissolution scenarios
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

5) Characterisation of depositional environments

-Delta front and delta plain, Mahakam Delta

PALYNOVA
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. Coastal plain environments:

MAHAKAM DELTA
__]Land

B Fiuvial Plain
[ Tidal Prain
[ oelta tromt
[[7] Prodexa

[ Distributaries
Bl rids Channels
+  Surface samples
A Cores samples

Mahakam Delta

Delta plain

The delta plain can be subdivided into a
fluvial and a tidal delta plain. The fluvial
delta plain is characterized by highly

compacted, well drained ground, the tidal
delta plain by its low elevation and is
subjection to daily tidal inundations. The
plant cover is Nypa palms and mangroves.
The tidal deltaic plain is incised by

distributaries and tidal channels.

Delta front

The delta front is an intertidal to shallow
subtidal platform. The topography
consists of linear undulations
perpendicular to the coast forming bars
and shoals. It also is incised by
distributary channels. They extend
seaward to its outer limit, terminating in
a mouth bar. The inner portion is made up
of extensive tidal flats.

Prodelta

The prodelta is a smooth seaward slope,
the inner part set of f by an abrupt break
in slope at the 5 m isobath. The outer
limit is between the 60 and 70 m

""""""""""""""""""""""""""""""""""""""""""""""""""""""""" 4 isobaths. The prodelta shows a shar
SecoMad

6 Figure 2: Matakam delta sedimentological features and samghing locations., asym"‘ef"y, due .fo .rh

is30 km gvide in the S but 5 to 15 Km
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North Mahakam delta:

Microfaunal distribution shows foraminiferal
assemblages across three profiles (A, B, C)
across a channel. Note the dominance of
Asterorotalia in the muddy delta front facies
and the presence of transported calcareous

taxa (Calcarina) in the sands of beaches and
bars.

Mahakam modern facies
studied by Bernard
Lambert of Total

Lateral distribution of the assemblages
across tidal delta and delta front channels.
The main feature is the penetration of
calcareous taxa (coloured arrow) in the
bottom channels (drift current , tide).
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South Mahakam delta: In this area, the mud and
tidal flats are very well developed. Arenaceous
biofacies are widely developed. Asterorotalia and
Elphidium predominate in the muddy delta front
facies, the sandy beaches and bars contain
populations of Ammonia.

SOUTH MAHAKAM .
DELTA & . .

¢ @%/o e || ;

?OQG

R \ﬁ/"\.;/" “—L\‘/——

Lateral distribution of the microfauna across delta
front channels. Note the extent of arenaceous
taxa (green arrow) associated with the mudflats

B tdal flats
advance and in contrast the deep penetration of B mud flats
calcareous taxa like Operculinanever seen in the | = shaes
delta front itself (colored arrow). B sandy channels
[ sandy bars
6 4 6 FALTINUVYA
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South East Mahakam delta: The
dominance of Ammonia beccari is
associated with the relative importance of
sand bodies (mouth bars) in this area (red
arrows indicate the sandy progradation, the
green arrow shows the advance of mud flats
overlying the sands (in red dashes, an old
distributary channel).

Mahakam modern facies
studied by Bernard
Lambert of Total

Tunu mouth bar. a-c ' Strike" profile located along the tidal flats. The surface mudflats are
characterised by arenaceous and Ammenia, delta front shales by Asterorotalia, Elphidium and Nonian).
Tthe core sands contain numerous Ammonia beccarii. d-e This profile represents the sandy mouth bar;
Ammonia predominates, however, in the deepest level of the core, the presence of a more diversified
_biofacies suggests a more distal influence. a-b. The "dip" profile illustrates the progradational process.
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NORTH MAHAKAM
Relations between LITHOLOGY, BIOFACIES and FACIES

CHANNELS
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orcancmup  BARREN  op e o AN
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YID. CHANNELS INNER
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A SOUTH and EAST MAHAKAM
Relations between LITHOLOGY, BIOFACIES and FACIES
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,g

Relationship between lithology, biofacies and
lithological facies. Depending on their location in
the

delta, identical lithologies have different
associations (especially marked between the North
and the other areas).

Mahakam modern facies
studied by Bernard
Lambert of Total

SOUTH EAST MAHA“M DELTA

ACTIVE DEPOTCENTER
FLUVIAL TIDAL TIDAL DELTA FRONT PRODELTA
PLAIN PLAIN FLATS INNER QUTER SLOPE
~——_ CHANNDLS e e --__\
la lla 1Ib 11

a0 gog

Mosion g Opercaing gy a3

- Tochur Tina &
e 2 S L
. & -:M""‘f‘“" - AT mona beccan
an VNoseTiie meicany B Avwrarsteln bepnoss B Pasdorotais Conoides
Aree st sy

South East Mahakam: Delta biofacies distribution.
This sketch shows the general distribution of the

main foraminiferal taxa in relation t ’a?v%v%d

sedimentology.
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O ORGANIC MUD C CHANNEL S DELTA FRONT SHALE
M MUD FLAT B BAR P PRODELTA SHALE

Biofacies distribution in the regressive deposits of the Mahakam delta. Most useful is
information regarding the association of sandy sediments and various calcareous taxa
(including large benthonics like Operculim). In many previous studies this association
was interpreted as indicating inner shelf sand deposits. In fact this association
indicates lower delta plain channels.

Mahakam modern facies
studied by Bernard
6.50 Lambert of Total PALYNOVA
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Mahakam Delta palynology

6.53
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

6) Palynology and environments

PALYNOVA
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3.e Palynomorphs

Acid-insoluble microfossils

Diverse and taxonomically unrelated groups, linked solely by acnd-
insoluble nature of preservable parts and small snze —

Algae
Acritarchs
Dinoflagellates-
Chlorophytic algae - eg Pediastrum and Botryococcus —

Prasniophyta - Tasmanites ar

Protists Foraminiferal test linings—
Worm teeth

Conodonts

Scalecodonts
Fungi Spores- :

Higher plants
Spores - from mosses, hornworts, ferns, seedferns
Pollen - more simple wall structure, inaperturate ora

single aperture - from gymnosperms
generally more complex wall structure
angiosperms
- inaperturate, single aperture or
single aperture derived -4
‘primitive’ angiosperms - Magnoliidae
and monocots

- triaperturate and triaperturate-derived |

- more advanced angiosperms - Eudicots
Cuticle fragments - from gymnosperms and angiosperms

3.32
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3.e2 Palynomorphs
Dinocysts

Freshwater possible dinocysts

The Bosedinia/Granodiscus group are probable
freshwater dinocysts, long ignored by

palynologists.

They are thought to be dinocysts since

a) Many specimens seem to have archaeopyle

b) Folds on the cyst wall often suggest some form
of tabulation, and

c) Mostspecimens possess an eye spot, or
ocellus, seen especially in peridiniod dinocysts

3.44

Friday, 7 October 2011




3.e2 Palynomorphs

Bosedinia/Granodiscus
First appear in S Malay Basin in
Oligocene
Bloom in Oligocene

Most abundant in 'M' lacustrine
shales

2J

\ s
N

Bosedinia/Granodiscus
3.46
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3.e5 Palynomorphs

Chlorophyllous algae

The algae Pediastrumand Botyococcus can be very abundant in both lacustrine and marine
sediments in the Southeast Asian region. They are photosynthetic algae which are very
important in lacustrine ecosystems. Their cells are rich in lipids, and so in deep lakes, where
there is a clear thermocline with anoxic bottom conditions, they may be preserved in vast
numbers, and in such settings they may contribute substantially to hydrocarbon source rocks.

There is currently only one species of Botryococcus, B braunii. Similar morphologies have been
reported back as far as the Ordovician, and it has been suggested that B. brauniiis the most
long-lived species known.

Pedliastrum is abundant in sediments of Cretaceous and Tertiary age, but is unknown from pre-
Cretaceous sediments.

3.50
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3.e5 Palynomorphs
Chlorophyllous algae

i

3 51 Pediastrum duplex
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Fossil
Pediastrum spp
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

6) Palynology and environments
-Coastal plain and mangroves

PALYNOVA
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Coastal plain and mangroves

PALYNOVA
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3.e6 Palynomorphs
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3.e6 Palynomorphs

Angiosperm pollen, Nypa fruticans,
Spinizonocolpites echinatus
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3.e8 aperturate pollen

Triporate/Tricolporate Florschuetzia produced by mangrove genus
Sonneratia

) N R e o T T P R i e

: [ Fossil
¥ S. caseolaris) @ F. clancolpata
I

|
1 ¢ | Florschuetzia sp
S. griffithii | columeliate
|

.@ b I ! @ Lagerstroemia |
. Florschuetzia |
y

[ — 2 - - -
Florschuetzia trdobata group.

semdobata V. laewigatus ‘B SRR
F. semilobata. F. ‘ovalis’ group, to Trapa
@‘1 Verrutricolporites V. laevigatus
y rotundiporus
V. scabratus
V. macroporus

Fossil
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3.e6 Palynomorphs
Trilete

Pteridophyte spores spores
A

Acrostichum aureum/speciosum
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Paleoenvironmental information derived from
microfossils:

+ sedimentary facies - forams, nannos, paly
*  Salinity - forams, paly

* ocean temperature - forams

» Climate - paly (forams)

» water mass characteristics - forams

*  Productivity - upwelling - forams (nannos)

+  Water depth, and sea level - forams, paly
<G>

Palynology main tool ........... FOraminifera main tool
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ENVIRONMENTAL CLASSIFICATIONS USED IN THIS STUDY
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Understanding local, extra-local
and regional pollen sources it e el
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Palynomorph deposition from coastal plain to basin

DIRECTION OF PALYNOMORPH TRANSPORT

# - Hintertano [

FS - FRESHWATER Swame [0 ™ - manGrove Jaizan Md Jais

Percent Concentration grains/gram sediment

Hinterland | Floodplain and above
5 ; A Upper coastal plain

Lower coastal plain
Delta front
Prodelta/slope

¢ e 5 20PALYNOVA
PALYNOVA
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Understanding local, extra-local and regional pollen sources
Model for West Natuna - Sedili river, West Malaysia |

Freshwater, above tidal .
influence Salinity 10%o0
Y Nypa swamps, salinity \
typically 5-10%0

\
l'u

Tidal limit

Salinity 1%

Rhizophora mangroves,

salinity typically 15-25
Pandanus and Tristaniopsis _/7 %oSalinity 10%o0

banks, freshwater intertidal < f - m
6.58
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Mililammina spp

Other arenaceous forams
Nonion spp

Miliolids

Ammonia spp

Planktoncs

Foraminifera

Freshwater, above tidal
influence

Salinity 10%o0

Nypa swamps, salinity .

\‘\ typically 5-10%0
\/Tidal limit

Salinity 1%

Palynology
transect
locations

Rhizophora mangroves,
salinity typically 15-25

Pandanus and Tristaniopsis
banks, freshwater intertidal

%o0Salinity 10%0
Y
PALYINUVA
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Sedili River, Rhizophora
pollen (Zonocostites ramonae)
abundance

BN

6.62
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Sedili River, Sonneratia
caseolaris (Florschuetzia
levipoli) pollen abundance

6.63
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Sedili River, Nypa Fruticans
(Spinizonocostites echinatus) !
pollen abundance

6.64
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Sedili River, Pandanus
helicopus (Pandaniidites spp)
pollen abundance

6.65 ' FALTINGRA
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Sedili River, Myrtaceae
(from Tristaniopsis) =
Myrtaceidites spp pollen
abundance

6.66 ) - LTI
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Sedili River, Smooth fern
spores (Laevigatosporites spp™
abundance |

6.67
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Sedili River,
environment summa

Freshwater, above tidal
influence

Brackish (19 o0
100 50 ) =alinity

Ehizophoraceas + Avicennia
Sonneratia caseolans, Actostichuny Hibvscus

[T S — ]
Nauclea subtida

Nypa fnticans
Ficus microcapa
Barringtonda conoidea

Polyaltlua sclerophvila

Tristoniopsis sumatianag

Pandanus hdicopus
Glutavehtina

s

Pandanus and Tristaniopsis
banks, freshwater intertidal

Nypa swamps, salinity
typically 5-10%0

Salinity 1%0

14

Rhizophora mangroves,
salinity typically 15-25
%o0Salinity 10%0

PALYNOVA
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

6) Palynology and environments

-Mangroves in temporal perspective

PALYNOVA
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Papalang-10 sea bottom core offshore Mahakam
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Sea level change and the palynological record - background PALYNOVA
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Sea level change and the palynological record
Attaka well, Mahakam Delta (Morley and Morley 2010)
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Sea level change and the palynological record

Mahakam Slope well
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Mangroves

From the base Early Miocene RAizophora swamps
have been closely tied to sea level cycles, becoming
most widespread during periods of rapid sea level
rise, such as immediately following glacial
terminations

High, stable sea level with
prograding delta

Aggradational phase,
Rhizophora mangroves expand
in relation to rapidly rising
sea levels

——
p

Low sea level, mangroves
restricted to limited areas
below shelf break

¢ Sonneratia

Rhizophora

PALYNOVA
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

6) Palynology and environments

-Upper coastal plain and lacustrine deposits

PALYNOVA
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TASEK BERA, PAHANG, MALAYSIA
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6 Lower fluvio-lacustrine depositional systems, lake size

Large lake, minimal marginal swamp

sugge_sﬂng young, mountainous a el i | i d
terrain el i S —
Lacustrine interval contains E -
superabundant freshwater algae B j : % |
suggesting a very large lake. - arge ake
od: J“ - ] Medium lake during early transgression
0 5000
Small to medium lake, minimal B J Tk
margmql swamp sugges’rmg young, nkEil
mountainous terrain, ~= 3]
mEFNH
Lacusfrine interval contains abundant - 3
freshwater algae suggesting a medium -R
sized lake.
Overbank | Lake
[/ Small medium large
| ) © 60 00
i e | |
1 100 1000 10000 PALYNOVA
6 k 75 Percent algae in relation to terrestrial component (C rjm 2004).
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6 Lower fluvio-lacustrine depositional systems, lake
geomorphology

Lake geomorphology is indicated by examining
the character of lake margin palynomorph
signals, such as the abundance and diversity of

marginal mangrove and freshwater swamp
pollen, with the abundance and diversity of
pollen from ferra firma vegetation. Lakes with
narrow marginal swamps, implying young
terrain with steep slopes, is suggested when Young terrain
the swamp pollen component is small, but with

a well developed marginal swamp, most of the ﬁ Hinterland A 1 >
pollen will probably be derived from the 5 ' o
mgrginal swamp and very little from the = lalalll
hinterland. | \
mature terrain ﬁ/

Marginal swamp

' C.rjm

& 76 PALYNOVA
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'Makassar Straits environment interpretation using
foraminifera and palynomorphs

6) Palynology and environments

-Coals

PALYNOVA
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'Ecology and palaeoecology of Southeast Asian peats and coals

-Main peat types
-'Basinal peats
-Kerapah peats
-Mangrove peats

PALYNOVA
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-Main peat types
-Basinal peats

mangrove swamps, on variety of soil
types

-Typically intergrade with mixed
dipterocarp forest

-Typically domed, beginning as
topotrophic mires, developing into
ombrotrophic mires, need low nutrients
-Show concentric zonation, divided into
'‘Phasic’ communities, reflected by
floristics, physiognomy, peat thickness
and nutrients

-Phasic community 1 similar to Mixed
Dipterocarp Forest, Ph 6 to stunted
Kerangas

-Mostly occur in coastal settings behind | |-

[ £

Peat swamp [ T l A
types on Baram 1

Lassa forest reserve, Sarawak

%-Relaﬁvely low diversity (about 300 tree
'spp in Sarawak)
-Peats reach up to 20m in thickness

N ‘ '; . r" : ;. \r r 1 ok

i 1 “ 4/ d‘ -. X .,-~'*;v":,? Y
| \-IL i.h rl Y STIRA (f
4 o 6
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The strongly domed Sarawak peats are widely
used as an analog for all domed peats. However,
they are exceptional, in that Phasic communities
2-4 are dominated by one local species, Shorea
albida. Elsewhere this is missing and few analog
species are known. Elsewhere doming is less,
with two main communities: Ph 1 (Mixed swamp
forest) and 'Padang’

-

Shorea albida 8aram Delto peat swamps

‘Padang
/ 7 | |
| f ; { [ \
‘| b b , ol
i : ,!' . ‘v: :—i'.l:; Av'.:: & g R v » : : " ' }s"" '}'3::‘:“’::.';‘;1- | .%FZF‘.-.IV_.‘\ :;r
Peat swamp 1¥IEIS l i 10 l i alll €3 N ) i 1 1 (e B SRR
types on Baram 1 2 3 4 - A
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'‘Basinal peats show the same succession seen
from shallow to deep peat to have developed in
temporal succession over 4500 years since sea

levels stabilised during the mid Holocene
MARUDI, BRUNEI
Mangrovél Peat swamp taxa
g g
: 3
Detritus mud| % § ! §
P : 3§ il
[ Sandy mud g % <§§ g‘ x B ?é% Phasic
@ S o 2 O aoo' communities
2255 yr BP=
3850 yr BP-
4370 yr BP
Anderson and Muller 1976'
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' Basinal peats are the dominant peat type in Sunda Regior_i

Sumatra

Q

Lasa

S “ Marudi l:l

o
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Ind onesia\"‘--...._ [

SE Asian peatswamp localities
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o

o
— % 4553 v I Peatland 8°s.]
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; Sebangau~ ° & ,
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‘Basinal’ peats form behind mangrive swamps
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v 4 PALYNOVA
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‘Basinal’ peat swamps summary

‘Basinal’ peats are essentially tied to sea level and commence as topotrophic peats building up behind
mangrove swamps at times of stable sea level. If they develop over long time periods they may build
up into the typical 'domed’ peats of Sarawak/Brunei, but the Sarawak peat swamps are anomalous in
that elsewhere doming is reduced since the main peat-forming species, Shorea albida, is missing
outside northern Borneo.

They principally form during periods of high or stable sea levels in areas of everwet climate

MSF = Mixed swamp forest

. MSF | Padang . MSF

‘Basinal’ peat swamp "I':‘? Peat swamp
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]

( Miocene coal |

‘Berakas coal, Brunei, Basinal pea'r‘
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'Main peat types
-Kerapah peats

-Mostly occur on podsolic soils especially where there is an iron or humic pan
inhibiting movement of ground water

-Thus associated with Kerangas rain forests

-These are true ombrotrophic mires, and may drape irregular topography

-May show doming and concentric zonation but not so pronounced as Basinal peats
-'Kerapah’ means 'wet end of Kerangas' in Sarawak

-Develop on poorly drained terraces and interfluves poor in nutrients

--Generaly associated with 'small leaved’ Kerangas spp especially Casuarina
(6ymnostoma) and Dacrydium

-Poorly developed today, greatest thickness 2-3m in Sarawak, ém in S Kalimantan
- Were much more extensive in past, High diversity

o W, By x.slten pah idraping) peats characterise low lying interfluves

3 ik Wﬁ%%mm?mm

AAAAAAAAAAA

Kerangas, on Kerapah on
rv.erfgreen shallow to deep peat with clay
rain forest podsol pockets
"""""" : g R
L sediments. - stocene @@ aeE

’ALYNOVA
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Lawas, Brunei
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| Sebangau, C Kalimantan
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In Sebangau, S Kalimantan, both peat types
occur together and intergrade
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I-Oligocene coal ‘

Kerapah swamps
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Basinal and Kerapah peats in Sunda Region

SE Asian peatswamp localities
‘Basinal’ peats
‘Kerapah' peats
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“Basinal' and '‘Kerapah' peat swamps summan}

‘Basinal’ peats are essentially tied to sea level and commence as topotrophic peats building up behind
mangrove swamps at times of stable sea level. If they develop over long time periods they may build up
into the typical 'domed’ peats of Sarawak/Brunei, but the Sarawak peat swamps are anomalous in that
elsewhere doming is reduced since the main peat-forming species, Shorea albida, is missing outside
northern Borneo. They principally form during periods of high or stable sea levels in areas of everwet
climate

Kerapah peats are true ombrotrophic peats and are not tied to sea level, occurring on topographic lows
lacking mineral influx, on interfluves and watersheds. They can form at any time during a sea level cycle
provided ?he rclimarfe is everwet

o MSF [ Padang | MSF

MSF = Mixed swamp forest

Padang‘Baslnal peat swamp ‘[’t? Peat swamp

T > Dacrydium

‘Kerapah’ and valley peats é Sonneratia
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Other peat forming associafion#
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