Makassar Straits environment interpretation using foraminifera and palynomorphs (emphasise clastic facies)

Robert J Morley
Palynova
June 2011

PALYNOVA

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments

- Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta

6) Palynology and environments
-Coastal plain and mangroves

- Mangroves in temporal perspective
-Upper coastal plain and lacustrine deposits
-Coals

```
Makassar Straits environment interpretation using
    foraminifera and palynomorphs
1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for
    foraminifera
5) Characterisation of depositional environments
    -Shelf environments
    -Slope environments
    -Carbonate dissolution issues
    -Delia front and delta plain, Mahakam Delta
6) Palynology and environments
    -Coastal plain and mangroves
    -Mangroves in temporal perspec ive
    -Upper coastal plain and lacustrine deposits
    -Coals
```


1. Effects of 'Throughflow'

The sills between the Sulu Sea and the Pacific prevent deep cold Antarctic bottom water from entering the Makassar Straits. This prevents deep water foraminiferal associations associated with deep cold Antarctic water from entering the Straits, and consequently it is not possible to interpret water depths in deeper parts of the Straits using depth-related foraminifera ($1500 \mathrm{~m}-2500 \mathrm{~m}$) in the manner used by micropalaeontologists in Pacific-type ocean-margin successions.

Note:
The water masses in Makassar Strait are derived from the Pacific, and controlled by the Mindanao sill, the Mangkalihat sill has no effect.

Subsea Topography in Areas of Indonesian Throughflow

Distribution and temperature of Antarctic bottom water cannot enter Indonesion basins due to sills

NOTES:

1) High and low salinity water masses are formed in the Pacific, but Iransported into Mokassar by Indonesion Through flow, without significant mixing from one layer to another
2) Polar-derived water layers relain their int egrity over wide areas, so low salinity layer in

Makassar Straits is derived from Antarctic Intermediate and Subarctic Intermediate water masses
Pacific Water Masses
N-S Profile Through Pacific

[^0]

The Indonesian Throughflow

Temperature and oxygen profiles
Across Banda Sea are a good proxy for Sulawesi Sea and Makassar Strait

Sowu Sea stegnant botteen water (disamrabie)
Temperature and Oxygen Profiles
Across Banda Sea

Profiles From Central Pacific, Showing Well Developed Oxygen Minimum Zone

Comparison of Central Pacific Water Mass Profile Makassar Strait

Temp profile form site 11 at same scale
PALYNOVA

RESPONSE OF BENTHIC FAUNA WITHIN A SILLED BASIN

PALYNOVA

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
```
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for
    foraminifera
5) Characterisation of depositional environments
    -Shelf environments
    -Slope environments
    -Carbonate dissolution issues
    -Delta front and delta plain, Mehakam Delta
6) Palynology and environments
    -Coastal plain and mangroves
    -Mangroves in temporal perspective
    -Upper coastal plain and lacustrine dep osits
    -Coals
```


Sea level change and climate change - background

Correspondence of sea level and climate change since last glaciation

Sea level rise and fall

PALYNOVA

Sea level rise and fall

(from Vail et al and Van Wagoner et al, 1998)
Sea level rise and fall

PALYNOVA

9.a Sequence biostratigraphy

Comparison of creation of accomodation space through regional subsidence, and sea level rise

Sea level change and the palynological record

Attaka well, Mahakam Delta (Morley and Morley 2010)

Mangrove pollen acmes approximately reflect frequency and extent of rapid sea level rises over Late Miocene to Pleist

PALYNOVA

Kutei Basin typical sequence, sediment supply $=$ subsidence, aggradational

Transgressive Interval (TST):
(Very Thin Shales + Carbonate Buildups)

Differences with the classic "Vail et al" sequence stratigraphic model include

- Stratal Patterns are dominated by Progradation on the Shelf.
- No Onlapping Packages on the Slope

Classic Sequence Framework

- Kutei Basin Strata can be put into a Classic Sequence Stratigraphic Framework,
- However, It is awkward because Sequence Boundaries are Difficult to Recognize on the shelf, and Correlate from Shelf to Basin
- Sequence Boundaries Must Pass through Prograding Clinoforms

PALYNOVA

PALYNOVA

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
```
4) Logging techniques and eco-taxonomic groupings for
    foraminifera
5) Characterisation of depositional environments
    -Shelf environments
    -Slope environment's
    -Carbonate dissolution issues
    -Delta front and delta plain, Mahakam Delta
b) Palynology and environments
    -Coastal plain and' mangroves
    -Mangroves in temporal perspective
    -Upper coastal plain and lacustrine deposits
    -Coals
```


Environment interpretation

- Uniformitarianism

The guiding principle for nearly all paleoenvironmental reconstructions

HOWEVER:

- Modern ocean = highstand of sea level.
- This can be resolved by using Quaternary data as analogues which cover last glacial
- Loss of information through taphonomic and diagenetic processes.

Paleoenvironmental information derived from microfossils:

- sedimentary facies - forams, nannos, paly
- Salinity - forams, paly
- ocean temperature - forams
- Climate - paly (forams)
- water mass characteristics - forams
- Productivity - upwelling - forarns (nannos)
- Water depth, and sea level change - forams, paly

6.2

Paleoenvironmental information derived from foraminifera

- Percent planktonics
- Species diversity
- Test-type ratios - planktonic/calc benthonics/aggluts
- Taxonomic approach
- Environment requirements of specific taxa
- Water depth-related/substrate-related etc
- Eco-taxonomic approach (mainly based on genera)

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments

- Carbonate dissolution issues
-Delia front and delia plain, Mahakam Delta

6) Palynology and environments

- Coastal plain and mangroves
- Mangroves in temporal perspective
- Upper coastal plain and lacustirine deposits
-Coals

4.b Microfossil processing and logging techniques

Foraminifera

- Sample washing and preparation
- take 50 gr (measured weight) of unwashed sample (sometimes light washing is necessary)
- Wash through sieve to remove clay grade sediment and mud
- add Hydrogen peroxide solution to disaggregate matrix
- continue/repeat until all rock fragments are disaggregated

Common problem, samples from deeper in well are more indurated so rock frags left in residue, and fewer forams seen in washed residue

4.b Microfossil processing and logging techniques

Foraminifera
Sample splitting method

Split sample

Residue for logging PALYNOVA

Water depth interpretation using foraminifera Planktonic benthonic ratios

Modern Gulf of Mexico Graph of Percent Planktonic specimens vs. Water Depth

Dashed line connects minimum water depths

6.4

Water depth interpretation using foraminifera Planktonic benthonic ratios

Planktonic/benthonic and test type ratios

JOVA

Taxonomic approach (Murray 1974)

> Discriminating marine depositional environments with ternary plot of benthic forams

Traditional approach to shelf environmental interpretation using ternery plots and diversity/abundance comparison

170 Mieropalanontology in perroleum explonanion

Mainly follows Murray 1974

Figure 101 Summary of the range of diversity in different environments.

6.31

Eco-taxonomic approach (mainly based on genera)

Foraminiferal eco-taxonomic groups

- Planktonics
-Subdivide benthonic foraminifera according to main eco-taxonomic groups
- Agglutinated simple spiral (planispiral) foraminifera -
- diverse habitats with limited carbonate availability
- Small rotaliids
- shallow photic zone variable salinity
- Miliolids
- shelf hypersaline settings when common
- Larger forams
- clear water shelf settings in photic zone
- Misc shelf group
- diverse habitats in stenohaline settings on shelf (and poss upper slope)
- Oxygen deficient group
- muddy substrates poor in oxygen (mainly upper slope)
- 'Deep/cold' group
- prefer water depths below 150m
- Primitive agglutinated
- typically tubular forms - tolerate strongly restricted environments
- Complex agglutinated
- common in 'normal' slope settings
3.b Eco-taxonomic groups Planktonics
- Planktonics -
- Planispiral

Streptospiral

Globigerina bulloides

Final chamber envelops earlier chambers

Living planktonic foraminifera showing pseudopodia

3.b Eco-taxonomic groups

Foraminifera Agglutinated
Agglutinated simple spiral (planispiral) foraminifera -- diverse habitats with limited carbonate avail

3.b Eco-taxonomic groups

Small rotaliids - shallow photic zone variable salinity

3.b Eco-taxonomic groups

Miliolids

- shelf hypersaline settings when common

3.18

3.b Eco-taxonomic groups

Larger forams
 - clear water shelf settings in photic zone

- Larger foraminifera, large planispiral foraminifera, with algal symbionts. typical genera Lepidocyclina, Nummulites, Discocyclina, Miogypsina, Flosculinella, can be

Heterostegina sp

Lepidocyclina pustulosa

3.19

Amphistegina E

3.b Eco-taxonomic groups

Misc shelf group

- diverse habitats in stenohaline setting on shelf (and poss upper slope)

3.b Eco-taxonomic groups

Oxygen deficient group
 - muddy substrates poor in oxygen (mainly upper slope)

Bi/triserial
Uvigerina basirotunda

3.21
3.b Eco-taxonomic groups

'Deep/cold' group
 - prefer water depths below 150m

3.22
3.b Eco-taxonomic groups

Primitive agglutinated

- typically tubular forms - tolerate strongly restricted environments

Single chambered - simple tubes - typical genera Bathysiphon

3.b Eco-taxonomic groups

Complex agglutinated
 -common in 'normal' slope settings

-Biserial - Textularia, Valvulina, Eggerella etc

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments

- Carbonate dissolution issues
- Delta front and delta plain, Mehakam Delta

6) Palynology and environments
-Coastal plain and mangroves
-Mangroves in temporal perspective
-Upper coastal plain and lacustrine dep osits
-Coals

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments
-Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta
6) Palynology and environments

- Coasial plain and mangroves
- Mangroves in temporal perspective
-Upper coastal plain and lacustrine deposits
-Coals

PALYNOVA

shelf deposition

6 Shelf environments

- shallow shelf well - depth groups

6 Shelf environments middle and outer shelf

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments
-Slope environments

- Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta

6) Palynology and environments

- Coastal plain and mangroves
- Mangroves in temporal perspective
-Upper coastal plain and lacustrine deposits
-Coals

slope depositional systems

6.43

6 Deep water - water depth interpretation using foraminifera Planktonic benthonic ratios

6 Deep water environment interpretation

6 Deep water - environment interpretation

Foraminiferal eco-taxonomic groups

6 Deep water - environment interpretation

Foraminiferal eco-taxonomic groups

Downslope transport and turbidites

Middle bathyal section
Calcareous forms Arenaceous forms

Shelf forams preserved in turbidites

PALYNOVA

Eugeissona insignis acmes

Middle bathyal turbidites
PALYNOVA

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments
-Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta
6) Palynology and environments
-Coastal plain and mangroves

- Mangroves in temporal perspective
-Upper coastal plain and lacustrine deposits
-Coals

Mid slope well, palynological indicators

1) Mangroves
2) Climate sensitive groups:

FORAMS

Arenaceous
\square Calc benthonic
Planktonic

POLLEN/SPORES

Less carbonate dissolution

More carbonate dissolution

Note close correspondence of changes in foram abundance/percentage and mangrove pollen maxima

Carbonate dissolution and sedimentation rates
2
Dissolution scenarios
1 Normal marine - rich and diverse calcareous assemblages
2 'In sediment' dissolution - may be barren of foraminifera 3 'In water' dissolution - contain common arenaceous forams

Carbonate dissolution issues

Normal marine setting

PALYNOVA

Carbonate dissolution issues

Normal marine setting 'in sediment' dissolution

PALYNOVA

Carbonate dissolution issues

Normal marine setting pronounced 'in
sediment' dissolution

PALYNOVA

Carbonate dissolution issues

Carbonate dissolution setting

PALYNOVA

Carbonate dissolution issues

Carbonate dissolution setting 'in water' dissolution

PALYNOVA

Carbonate dissolution issues

Carbonate dissolution setting pronounced 'in water' dissolution

PALYNOVA

PALYNOVA

DD, DH and DL
Percent arenaceous

This tells us:

1) Acmes of arenaceous forams are probably not condensed sections
2) Divergences from this trend probably identify misinterpretations or periods of erosion

Well A and Well B

The main control on microfossil deposition is carbonate dissolution, which displays three different levels of intensity through the succession. Different biostratigraphic models are needed to explain sequence characteristics in each of these intervals

Well A and Well B

The main control on microfossil deposition is carbonate dissolution, which displays three different levels of intensity through the succession

This is shown particularly clearly by plotting foram arenaceous vs calcareous forams as a \% .

Minimal dissolution, foram abundance acmes coincide eith transported foram minima and condensed sections

Some dissolution, in this interval

Abundant dissolution in this interval, calcareous foraminifera are essentially preserved in turbidite flows; some condensed sections may be virtually void of foraminifera
'ALYNOVA

Plot shows foraminiferal abundance
Acmes (arrowed) suggest intervals of more condensed deposition, However, few of these acmes really reflect true condensed sections, in DPP/DL1, it is possible that true condensed are present but not reflected by strong foram acmes, in DL2, arenaceous acmes seem to just precede the condensed section, in DL5 and MDB, foram acmes contain fewer transported forams in terms of $\%$, but increased transported forams in terms of abundance. This pattern is not fully understood, but likely suggests that even the MDB interval with slow accumulation rates is essentially fed mainly by turbidites

B

Acmes (arrowed) suggest intervals of more condensed deposition, However, few of these acmes really reflect true condensed sections, in DPP/DL1, it is possible that true condensed are present but not reflected by strong foram acmes, in DL2, arenaceous acmes seem to just precede the condensed section, in DL5 and MDB, foram acmes contain fewer transported forams in terms of $\%$, but increased transported forams in terms of abundance. This pattern is not fully understood, but likely suggests that even the MDB interval with slow accumulation rates is essentially fed mainly by turbidites

Northern inboard to outboard: 'DL' Carbonate

Differentiation of Systems Tract in Slope Setting Using

Foraminifera and pollen a) low dissolution setting
Percentage presentation
Mangrove polven

Differentiation of Systems Tract in Slope Setting Using Foraminifera and pollen b) High dissolution setting

Abundance presentation

Carbonate

 dissolution scenariosMakassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments
-Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta
6) Palynology and environments

- Coastal plain and mangroves
- Mangroves in temporal perspec tive
-Upper coastal plain and lacustrine deposits
-Coals

6.44

Coastal plain environments: Mahakam Delta

Delta plain

The delta plain can be subdivided into a fluvial and a tidal delta plain. The fluvial delta plain is characterized by highly compacted, well drained ground, the tidal delta plain by its low elevation and is subjection to daily tidal inundations. The plant cover is Nypa palms and mangroves. The tidal deltaic plain is incised by distributaries and tidal channels. Delta front
The delta front is an intertidal to shallow subtidal platform. The topography consists of linear undulations perpendicular to the coast forming bars and shoals. It also is incised by distributary channels. They extend seaward to its outer limit, terminating in a mouth bar. The inner portion is made up of extensive tidal flats.

Prodelta

The prodelta is a smooth seaward slope, the inner part set off by an abrupt break in slope at the 5 m isobath. The outer limit is between the 60 and 70 m isobaths. The prodelta shows a sharp asymmetry, due to the Pdifityoulcerfefid is 30 km wide in the S but 5 to 15 Km

North Mahakam delta:

Microfaunal distribution shows foraminiferal assemblages across three profiles (A, B, C) across a channel. Note the dominance of Asterorotalia in the muddy delta front facies and the presence of transported calcareous taxa (Calcarina) in the sands of beaches and bars.

> Mahakam modern facies studied by Bernard Lambert of Total

Lateral distribution of the assemblages across tidal delta and delta front channels. The main feature is the penetration of calcareous taxa (coloured arrow) in the bottom channels (drift current, tide).

South Mahakam delta: In this area, the mud and tidal flats are very well developed. Arenaceous biofacies are widely developed. Asterorotalia and Elphidium predominate in the muddy delta front facies, the sandy beaches and bars contain populations of Ammonia.

Lateral distribution of the microfauna across delta front channels. Note the extent of arenaceous taxa (green arrow) associated with the mudflats advance and in contrast the deep penetration of calcareous taxa like Operculina never seen in the delta front itself (colored arrow).

「HLYIVUVH

Trochammina op Arenoparnella mexicana (')
Ammotum saltsum Ammobacultes apglutinars Egpereloides scabrum

Ammonia beccanil

Asterorctalla trispincesa
Elphidium group
Nonion group
Pseudorotala group
Ephidium bericum
Operculina gaymardi

N
」
'

6.46

South East Mahakam delta: The dominance of Ammonia beccari is associated with the relative importance of sand bodies (mouth bars) in this area (red arrows indicate the sandy progradation, the green arrow shows the advance of mud flats overlying the sands (in red dashes, an old distributary channel).

> Mahakam modern facies studied by Bernard Lambert of Total

Tunu mouth bar: a-c 'Strike" profile located along the tidal flats. The surface mudflats are characterised by arenaceous and Ammonia, delta front shales by Asterorotalia, Elphidium and Nonian). Tthe core sands contain numerous Ammonia beccarii. d-e This profile represents the sandy mouth bar; Ammonia predominates, however, in the deepest level of the core, the presence of a more diversified biofacies suggests a more distal influence. a-b. The "dip" profile illustrates the progradational process.

Relationship between lithology, biofacies and lithological facies. Depending on their location in the delta, identical lithologies have different associations (especially marked between the North and the other areas).

Mahakam modern facies studied by Bernard Lambert of Total

South East Mahakam: Delta biofacies distribution. This sketch shows the general distribution of the main foraminiferal taxa in relation to topography and sedimentology.

PALYNOVA

Biofacies distribution in the regressive deposits of the Mahakam delta. Most useful is information regarding the association of sandy sediments and various calcareous taxa (including large benthonics like Operculima). In many previous studies this association was interpreted as indicating inner shelf sand deposits. In fact this association indicates lower delta plain channels.

Mahakam Delta palynology

6.53

Sonneratia
Rhizophora
Nypa

```
Makassar Straits environment interpretation using foraminifera and palynomorphs
1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for
    foraminifera
i) Characterisatior of depositional environments
    -Shelf environments
    -Slope environments
    -Carbonate dissolution issues
    -Delta front and delta plain, Mahakam Delta
```

6) Palynology and environments
 - Coastal plain and mangroves
 - Mangroves in temporal perspective
 - Upper coastal plain and lacustrine de osits
-Coals

3.e Palynomorphs

Acid-insoluble microfossils

Diverse and taxonomically unrelated groups, linked solely by acidinsoluble nature of preservable parts and small size
Algae
Acritarchs
Dinoflagellates
Chlorophytic algae - eg Pediastrum and Botryococcus
Prasniophyta - Tasmanites
Protists Foraminiferal test linings
Worm teeth
Conodonts
Scalecodonts
Fungi Spores
Higher plants
Spores - from mosses, hornworts, ferns, seedferns
Pollen - more simple wall structure, inaperturate or a single aperture - from gymnosperms
generally more complex wall structure angiosperms

- inaperturate, single aperture or single aperture derived
'primitive' angiosperms - Magnoliidae and monocots
- triaperturate and triaperturate-derived
- more advanced angiosperms - Eudicots

3.32

Cuticle fragments - from gymnosperms and angiosperms

3.e2 Palynomorphs

Dinocysts

Freshwater possible dinocysts
The Bosedinia/Granodiscus group are probable freshwater dinocysts, long ignored by palynologists.

They are thought to be dinocysts since
a) Many specimens seem to have archaeopyle
b) Folds on the cyst wall often suggest some form of tabulation, and
c) Most specimens possess an eye spot, or ocellus, seen especially in peridiniod dinocysts

3.44

3.e2 Palynomorphs

Bosedinia/Granodiscus

First appear in S Malay Basin in Oligocene

Bloom in Oligocene
Most abundant in ' M ' lacustrine shales
3.46

3.e5 Palynomorphs

Chlorophyllous algae

The algae Pediastrum and Botyococcus can be very abundant in both lacustrine and marine sediments in the Southeast Asian region. They are photosynthetic algae which are very important in lacustrine ecosystems. Their cells are rich in lipids, and so in deep lakes, where there is a clear thermocline with anoxic bottom conditions, they may be preserved in vast numbers, and in such settings they may contribute substantially to hydrocarbon source rocks.

There is currently only one species of Botryococcus, B braunii. Similar morphologies have been reported back as far as the Ordovician, and it has been suggested that B. braunii is the most long-lived species known.

Pediastrum is abundant in sediments of Cretaceous and Tertiary age, but is unknown from preCretaceous sediments.
3.50

3.e5 Palynomorphs

Chlorophyllous algae

3.51 Pediastrum duplex

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for
foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environments
-Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta
6) Palynology and environments
-Coastal plain and mangroves

- Mangroves in temporal perspective
- Upper coastal plain and lacustrine deposits
-Coals

Coastal plain and mangroves

3.e6 Palynomorphs

Tricolporate pollen, Rhizophora type, Zonocostites ramonae

3.e6 Palynomorphs

Angiosperm pollen, Nypa fruticans, Spinizonocolpites echinatus

3.e8 aperturate pollen

Triporate/Tricolporate Florschuetzia produced by mangrove genus Sonneratia

3.e6 Palynomorphs

Pteridophyte spores
 Acrostichum aureum/speciosum

Trilete spores Acrostichum

Paleoenvironmental information derived from microfossils:

- sedimentary facies - forams, nannos, paly
- Salinity - forams, paly
- ocean temperature - forams
- Climate - paly (forams)
- water mass characteristics - forams
- Productivity - upwelling - forarns (nannos)
- Water depth, and sea level - forams, paly

A.

Canglat Lamonames

	UPPER DELTA PLAIN		LOWER DELTA PLAIN					DELTA FRONT TO PRODELTA		
EROSIVE hinterland	Lacustrane	SUPRAMDAL	Leptir INTERTDDAL		LOM	$\begin{aligned} & \text { ER } \\ & \text { nDM } \end{aligned}$		$\begin{array}{c\|} \hline \text { INNER } \\ \text { NERTIC } \\ \hline \end{array}$	MDCOLE NERIDC	OUTER NERTIC
$\frac{8}{3}$						$\frac{1}{5}$		$\begin{aligned} & 1 \\ & \frac{1}{3} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \frac{3}{3} \\ & \frac{1}{3} \\ & \frac{1}{3} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \frac{1}{3} \\ & \frac{1}{4} \\ & \frac{1}{2} \end{aligned}$

Lower coastal plain and shallow shelf depositional systems

Foraminifera
Primary driver

6.54

Palynomorph deposition from coastal plain to basin

Understanding local, extra-local and regional pollen sources Model for West Natuna - Sedili river, West Malaysia

Foraminifera

	Miliammina spp
	Other arenaceous forams
	Nonion spp
	Miliolids
	Ammonia spp
	Planktoncs

Sedili River, Sonneratia caseolaris (Florschuetzia levipoli) pollen abundance

Sedili River, Nypa Fruticans (Spinizonocostites echinatus) pollen abundance

Sedili River, Pandanus helicopus (Pandaniidites spp) pollen abundance

6.65

Sedili River, Smooth fern spores (Laevigatosporites spp abundance

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for
foraminifera
5) Characterisation of depositional environments
-Shelf environments
-Slope environment's
-Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta
6) Palynology and environments
-Mangroves in temporal perspective
-Upper coastal plain and lacustrine deposits
-Coals

PALYNOVA

Modelling climate change in E Sunda using historical and GCM data

Cannon, Morley, Bush 2009 historical data

Asymmetric model of climate change and mangrove swamp expansion/contraction for E Sunda through a typical glacio-eustatic sea level cycle

PALYNOVA

Sea level change and the palynological record - background

ODP 820, from offshore NE Australia

Sea level change and the palynological record

Attaka well, Mahakam Delta (Morley and Morley 2010)

Mangrove pollen acmes approximately reflect frequency and extent of rapid sea level rises over Late Miocene to Pleist

Sea level change and the palynological record

Mahakam Slope well

PALYNOVA

Mangroves

From the base Early Miocene Rhizophora swamps have been closely tied to sea level cycles, becoming most widespread during periods of rapid sea level rise, such as immediately following glacial terminations

High, stable sea level with prograding delta

Aggradational phase, Rhizophora mangroves expand in relation to rapidly rising sea levels

Low sea level, mangroves restricted to limited areas below shelf break

PALYNOVA

Makassar Straits environment interpretation using foraminifera and palynomorphs

1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for foraminifera
5) Characterisation of depositional environments -Shelf environments
-Slope environment's
-Carbonate dissolution issues
-Delta front and delta plain, Mahakam Delta
6) Palynology and environments

- Coastal plain and mangroves
- Mangroves in temporal perspective
-Upper coastal plain and lacustrine deposits
-Coals

Detritus mud
Silt
sand
6.70

Fluvial depositional systems
Lacustrine succession in West Malaysia - local dominance by specific local taxa. Lake forms after channel abandonment

6 Lower fluvio-lacustrine depositional systems, lake size

Large lake, minimal marginal swamp
suggesting young, mountainous terrain

> Lacustrine interval contains superabundant freshwater algae suggesting a very large lake.

Small to medium lake, minimal marginal swamp suggesting young, mountainous terrain,

Lacustrine interval contains abundant freshwater algae suggesting a medium sized lake.
6.75

Percent algae in relation to terrestrial component (C rjm 2004).

6 Lower fluvio-lacustrine depositional systems, lake geomorphology

Lake geomorphology is indicated by examining the character of lake margin palynomorph signals, such as the abundance and diversity of marginal mangrove and freshwater swamp pollen, with the abundance and diversity of pollen from terra firma vegetation. Lakes with narrow marginal swamps, implying young terrain with steep slopes, is suggested when the swamp pollen component is small, but with a well developed marginal swamp, most of the pollen will probably be derived from the marginal swamp and very little from the hinterland.

PALYNOVA

```
Makassar Straits environment interpretation using foraminifera and palynomorphs
1) Effects of 'Throughflow'
2) Sequence model
3) Microfossils and depositional environments
4) Logging techniques and eco-taxonomic groupings for
    foraminifera
5) Characterisation of depositional environments
    -Shelf environments
    -Slope environment's
    -Carbonate dissolution issues
    -Delta front and delta plain, Mahakam Delta
6) Palynology and environments
    - Coastal plain and mangroves
    - Mangroves in temporal perspective
    -Upper coastal plain and lacustrine de posits
    -Coals
```

Ecology and palaeoecology of Southeast Asian peats and coals
-Main peat types
-'Basinal peats
-Kerapah peats
-Mangrove peats

-Mostly occur in coastal settings behind mangrove swamps, on variety of soil types
-Typically intergrade with mixed dipterocarp forest
-Typically domed, beginning as topotrophic mires, developing into ombrotrophic mires, need low nutrients -Show concentric zonation, divided into 'Phasic' communities, reflected by floristics, physiognomy, peat thickness and nutrients
-Phasic community 1 similar to Mixed Dipterocarp Forest, Ph 6 to stunted Kerangas

Lassa forest reserve, Sarawak
-Relatively low diversity (about 300 tree spp in Sarawak)
-Peats reach up to 20 m in thickness

Peat swamp types on Baram 1

2

3

Shorea albida at Seria, Brunei

Peat swamp
types on Baram 1

The strongly domed Sarawak peats are widely used as an analog for all domed peats. However, they are exceptional, in that Phasic communities 2-4 are dominated by one local species, Shorea albida. Elsewhere this is missing and few analog species are known. Elsewhere doming is less, with two main communities: Ph 1 (Mixed swamp forest) and 'Padang'

Shorea albida
Baram Delta peat swamps

Padang

5
'Basinal peats show the same succession seen from shallow to deep peat to have developed in temporal succession over 4500 years since sea levels stabilised during the mid Holocene

Basinal peats are the dominant peat type in Sunda Region

'Basinal' peat swamps summary

'Basinal' pears are essentially tied to sea level and commence as topotrophic pats building up behind mangrove swamps at times of stable sea level. If they develop over long time periods they may build up into the typical 'domed' peats of Sarawak/Brunei, but the Sarawak peat swamps are anomalous in that elsewhere doming is reduced since the main peat-forming species, Chorea albida, is missing outside northern Borneo.

They principally form during periods of high or stable sea levels in areas of everwet climate


```
Main peat types
    -Kerapah peats
```

-Mostly occur on podsolic soils especially where there is an iron or humic pan inhibiting movement of ground water
-Thus associated with Kerangas rain forests
-These are true ombrotrophic mires, and may drape irregular topography

- May show doming and concentric zonation but not so pronounced as Basinal peats
- 'Kerapah' means 'wet end of Kerangas' in Sarawak
-Develop on poorly drained terraces and interfluves poor in nutrients
--Generaly associated with 'small leaved' Kerangas spp especially Casuarina (Gymnostoma) and Dacrydium
-Poorly developed today, greatest thickness 2-3m in Sarawak, 6m in S Kalimantan
- Were much more extensive in past, High diversity

'ALYNOVA

\square Lawas Peatswamp, Brunei
Detritus mud
Silt
Develop behind mangroves adjacent to Podsols ALYNOVA

Sebangau, C Kalimantan

In Sebangau, S Kalimantan, both peat types occur together and intergrade

Kerapah

Different periods of peat swamp formation in Sebangau area of S Kalimantan

Oligocene coal

Kerapah swamps

PALYNOVA

'Basinal' and 'Kerapah' peat swamps summary

'Basinal' peats are essentially tied to sea level and commence as topotrophic peats building up behind mangrove swamps at times of stable sea level. If they develop over long time periods they may build up into the typical 'domed' peats of Sarawak/Brunei, but the Sarawak peat swamps are anomalous in that elsewhere doming is reduced since the main peat-forming species, Shorea albida, is missing outside northern Borneo. They principally form during periods of high or stable sea levels in areas of everwet climate

Kerapah peats are true ombrotrophic peats and are not tied to sea level, occurring on topographic lows lacking mineral influx, on interfluves and watersheds. They can form at any time during a sea level cycle provided the climate is everwet

Other peat forming associations

Mangrove rattan Peats swamps
(Rhizophora
Sonneratia)

\square	Late Miocene
\square	Middle Miocene
\bigcirc	Early Miocene
\bigcirc	Oligocene

Sgbogy 9 ogidejpit f^{m},
Bronet: Nidue Miocene (Morley 2000)

End

PALYNOVA

[^0]: An oxygen-deficient layer is characteristic of each of the oceans, due to upvelling around their margins induced from surface winds, such as the Trodes. These are reflected in the fossil record by blooms of certain groups of foraminifera. Such blooms are not seen in Makassar since there is no upwelling. and no oxygen-minimum layer.

