

Throughflow Progress Report June 2011

"Neogene circulation patterns and biogeography of foraminifera in the Indonesian Throughflow"

Nicholas Fraser

Christian-Albrechts Universität Kiel

Core MD06-3075 Recap

- Core located in the Davao Gulf, off coast of Mindanao, in the ITF inflow path. 1878m water depth.
- Represents oceanographic conditions (temperature, salinity, continental run-off) from the present day up to the LGM.

- Applying a range of foraminiferal geochemical proxies. E.g. Mg/Ca, δ^{18} O, δ^{13} C, XRF core-scanning.
- •Analogies can be drawn between glacial/interglacial conditions of the Quaternary and those of the Miocene.

Core MD06-3075 Recap

- Core located in the Davao Gulf, off coast of Mindanao, in the ITF inflow path. 1878m water depth.
- Represents oceanographic conditions (temperature, salinity, continental run-off) from the present day up to the LGM.

(Bolliet et al.)

- Applying a range of foraminiferal geochemical proxies. E.g. Mg/Ca, δ^{18} O, δ^{13} C, XRF core-scanning.
- •Analogies can be drawn between glacial/interglacial conditions of the Quaternary and those of the Miocene.

Why Quarternary?

- We do not yet fully understand the modern Throughflow we need to do this before we can study the Miocene.
- Changes in sea level fluctuations between the LGM and present day are similar to fluctuations seen in the Miocene (approx. 120m).
- Current monsoon conditions are also analogous to Miocene conditions.
- Development of WPWP and ENSO.
- Boundary conditions.

Core MD06-3075 Progress

Core MD06-3075: Next stages

- High resolution planktonic stable isotope and Mg/Ca analysis.
 Currently have 360 samples of *G. ruber* at 2cm resolution ready to be analysed.
- Development of robust age model using AMS ¹⁴C dating techniques.
- Further work on radiocarbon reservoir ages from wood samples found within core.
- Publish!

Age Model

Radiocarbon Reservoir Ages

- 14C is produced in the upper atmosphere, then exchanges with atmosphere and ocean.
- The rate of exchange between atmosphere and ocean causes marine samples to have a higher radiocarbon age than that of an atmospheric sample.
- Therefore, it is necessary, and important, to correct marine samples with a radiocarbon reservoir age.
- Present day global average of 400 years. Varies spatially and temporally.
 Temporal reconstructions mainly rely on modelling approaches due to lack of date-able material.

Radiocarbon Reservoir Ages

Radiocarbon Reservoir Ages

Reservoir ages of:

- 610 years at 760 BP
- 225 years at 3290 BP

Significant changes in reservoir ages over time. Further samples still to be dated.

RV Sonne Cruise, July/August 2011

RV Sonne Cruise, July/August 2011

Deutsche Forschungsgemeinschaft

DFG

Proposed Route

- Beginning in Makassar (SW Sulawesi), to the North through the Makassar Strait.
- Sampling from Mahakam Delta.
- Finishing in Java Sea and towards Singapore.

