

Cenozoic bryozoans from southeast Asia: a contribution to the origin of high tropical

Emanuela Di Martino

Supervisors

Paul D. Taylor Palaeontology Department NHM London

Lucas Lourens Utrecht University

cture

QuickTime™ and a decompressor are needed to see this pi

- What are bryozoans?
- What do we already know about Cenozoic bryozoans from the Indonesian Archipelago?
- ...about my project and my aims...

What are bryozoans?

- invertebrate phylum
- >6000 living species
- mainly marine
- intertidal to 8000 m depth
- suspension feeders
- all colonial
- usually sessile, benthic
- most have CaCO₃ skeletons
- Ordovician-Recent

Schematic anatomy of anascan cheilostome

Bryozoan colony-forms

1. Phylactolaemata entirely freshwater in distribution, uncalcified

2. Stenolaemata (marine)

Cryptostomida, Cystoporida
 and Fenestrida (Lower
 Ordovician - Upper Permian)

Trepostomatida (Lower
 Ordovician to Upper Triassic)

• <u>Cyclostomatida (Lower</u> <u>Ordovician - Recent)</u>

Colonies encrusting or erect

Body wall calcified

2. Stenolaemata (marine)

Cryptostomida, Cystoporida
 and Fenestrida (Lower
 Ordovician - Upper Permian)

Trepostomatida (Lower
 Ordovician to Upper Triassic)

• <u>Cyclostomatida (Lower</u> <u>Ordovician - Recent)</u>

Colonies encrusting or erect

Body wall calcified

2. Stenolaemata (marine)

Cryptostomida, Cystoporida
 and Fenestrida (Lower
 Ordovician - Upper Permian)

Trepostomatida (Lower
 Ordovician to Upper Triassic)

• <u>Cyclostomatida (Lower</u> <u>Ordovician - Recent)</u>

Colonies encrusting or erect

Body wall calcified

3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine

<u>Cheilostomata (Upper</u>
 <u>Jurassic - Recent), encrusting,</u>
 <u>erect or free living, zooids</u>
 <u>calcified, typically box-shaped,</u>
 <u>almost exclusively marine</u>

3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine

 <u>Cheilostomata (Upper</u> <u>Jurassic - Recent), encrusting,</u> <u>erect or free living, zooids</u> <u>calcified, typically box-shaped,</u> <u>almost exclusively marine</u>

Mag = 228 X EHT = 20.00 kV Signal A = QBSD Chamber = 14 Pa
 WD = 13 mm Spot Size = 500 File Name = edm0087.tif

3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine

 <u>Cheilostomata (Upper</u> <u>Jurassic - Recent), encrusting,</u> <u>erect or free living, zooids</u> <u>calcified, typically box-shaped,</u> <u>almost exclusively marine</u>

3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine

 <u>Cheilostomata (Upper</u> <u>Jurassic - Recent), encrusting,</u> <u>erect or free living, zooids</u> <u>calcified, typically box-shaped,</u> <u>almost exclusively marine</u>

What do we already know about Cenozoic bryozoans from Indonesia?

...Almost nothing...

The number of papers that cite Cenozoic bryozoans is restricted and occurrences are rare!

• First report Oppenoorth and Gerth (1929)

"...part of the rich fauna of Nanggoelen beds..."

- Lagaaij (1968a; 1968b; 1969)
- Keij (1973)
- Cook and Lagaaij (1973; 1976)
- Franchino et al. (1988)
- Pouyet & Braga (1993)
- Braga (2001)

What do we already know about Cenozoic bryozoans from Indonesia?

Species	Age	Locality
<i>Filisparsa</i> sp.	Late Oligocene	Lombok
<i>Exidmonea</i> sp.	Late Oligocene	Lombok
Idmonea sp.	Lower Miocene	Malaysian Borneo
Crisia sp.	Lower - Middle Miocene	Malaysian Borneo, Madura
Lichenopora sp.	Middle Miocene	Madura
Nellia oculata	Miocene	East Java, Madura, Tanimbar
<i>Nellia</i> sp.	Late Oligocene	Lombok
Vincularia sp.	Miocene	East Borneo, East Java, Madura, Tanimbar
<i>Canda</i> sp.	Lower Miocene	Malaysian Borneo
Scrupocellaria sp.	Late Oligocene-M. Miocene	Lombok, Madura
Synnotum sp.	Lower Miocene	East Java, Madura
Poricellaria sp.	Middle Oligocene, Miocene	East Java, Madura, Tanimbar, M. Borneo
Steginoporella sp.	Middle Miocene	Madura
Thalamoporella sulawesiensis	Eocene	Sulawesi
Thalamoporella sp.	Middle Miocene	Madura
Chlidonia piriformis	Lower Miocene	East Java, Madura
<i>Cellaria</i> sp.	L. Miocene	Malaysian Borneo
Skylonia sarawakensis	Early Miocene	Malaysian Borneo
Skylonia thomasi thomasi	Middle Miocene	Malaysian Borneo, Madura
Skylonia thomasi madurensis	Middle Miocene	Madura
Crepis aff. longipes	Lower Miocene	East Java
Catenicella sp.	Miocene	East Java, Madura
Vasignyella cf. otophora	Middle Miocene	Madura
Savignyella sp.	Middle Miocene	Madura
Gemellipora sp.	Early Miocene	East Java, Madura
Pasythea sp.	Middle Miocene	Madura
Margaretta sp.	Lower-Middle Miocene	Malaysian Borneo, Madura
<i>Reteporella</i> sp.	Middle Miocene	Madura
Celleporidae sp.	Middle Miocene	Madura
Lacrimula asymmetrica	Miocene	W. Madura
Lacrimula grunaui	Miocene	E. Madura
Lacrimula similis	Miocene	W. Madura
Conescharellina sp.	Miocene	E. Madura

11 species
21 genera
Some authors
only identified
specimens to
family level.

My aims...

1) Identify bryozoan taxa present in sampled sections

2) Track changes in bryozoan diversity and taxonomic composition and correlate these with facies changes

3) Estimate MART (mean annual range in temperature) values from within-colony variations in zooid size

Work accomplished in the field

Batu Putih 1 TF 76

TF76 Encrusting bryozoans on the base of overturned platy coral

Top Reef Stadion in Mine TF 57

TF57 Colony of Steginoporella sp. on the base of a platy coral

My samples

Stadium sections Top Reef

TF 51

Lichenoporidae sp. Parellisina sp.1 Calloporidae sp.1 Calloporidae sp.2 Steginoporella sp.1 Reptadeonella sp.1 Puellina sp.1 Ascophora sp.1 Ascophora sp.2 Ascophora sp.3 Hippopodina cf. feegensis Phidoloporidae sp.1

TF 57

Calloporidae sp.2 Steginoporella sp.1 Puellina sp.1 Hippopodina cf. feegensis Mucronella sp.1

14 species

NHM Collections

Late Oligocene Malaysian Borneo

NHM Collections

Late Oligocene Malaysian Borneo

Species

Oncousoeciidae sp.

Annectocyma sp.

Crisia sp.

Lichenopo ridae sp.

Calloporidae sp.

Nellia sp.

Cupuladria sp.

Aechmella sp.

Monoporella sp.

Puellina spp.

Chorizop ora sp.

Trypostega sp.

Schizoporella cf. geminipora

Thalamoporella sp.

Margaretta sp.

Retelepralia cf. mosaica

Reteporella sp.

Celleporidae sp.

Conesc harellina sp.

Age: Late Oligocene

Locality: Malaysian Borneo

19 genera

8 already cited in the literature

11 first records

MART analysis using within-colony variation in zooid size

MART = <u>m</u>ean <u>a</u>nnual <u>range in t</u>emperature

Cheilostome bryozoan zooid size is inversely correlated with ambient temperature at time of budding

Bryozoans as palaeoenvironmental indicators

Cupuladria exfragminis

A

Okamura et al. 2011

upwelling (cold) zooids

non-upwelling (warm) zooids

В

MART method

- randomly select 20 zooids
- avoid early zooids and areas of irregular growth
- measure zooid length and width
- calculate length x width (= area proxy)

- calculate CV (= SD/mean x 100)
- repeat in at least 4 more colonies

Steginoporella sp.

MART 5 colonies 20 zooids vertical walls well preserved

Conclusions

 Indonesian bryozoans from the Miocene are associated with corals

 most are encrusting colonies; only a few erect taxa have been found

 biodiversity is considerably higher than appears from the literature