

Palaeoclimates in Kalimantan proxies from Isotope and Trace Element Geochemistry using LA-ICP-MS

Bill L Wood

Dr. Wolfgang Müller

• Tectonically driven closure of Indonesian Throughflow (R. Hall)

Introduction • Tectonically driven closure of Indonesian Throughflow (R. Hall) Response of biota through time • In conjunction with climate change Royal Holloway University of London THROUGHFLOW

- Tectonically driven closure of Indonesian Throughflow (R. Hall)
- Response of biota through time
- In conjunction with climate change
- High resolution palaeoclimate proxies (Nick and Elena)

- Tectonically driven closure of Indonesian Throughflow (R. Hall)
- Response of biota through time
- In conjunction with climate change
- High resolution palaeoclimate proxies (Nick and Elena) »
- Long term trends in climate change

- Tectonically driven closure of Indonesian Throughflow (R. Hall)
- Response of biota through time
- In conjunction with climate change
- High resolution palaeoclimate proxies (Nick and Elena) »
- Long term trends in climate change
- Shorter term Seasonality

Royal Holloway University of London

- Tectonically driven closure of Indonesian Throughflow (R. Hall)
- Response of biota through time
- In conjunction with climate change
- High resolution palaeoclimate proxies (Nick and Elena) »
- Long term trends in climate change
- Shorter term Seasonality
- Different approach required

Royal Holloway University of London

- Logging of sedimentary sections
- Selection of very well preserved fossils (original carbonate)

- Logging of sedimentary sections
- Selection of very well preserved fossils (original carbonate)
- Continued development of chronologies

- Logging of sedimentary sections
- Selection of very well preserved fossils (original carbonate)
- Continued development of chronologies
- Sectioning of fossils

- Logging of sedimentary sections
- Selection of very well preserved fossils (original carbonate)
- Continued development of chronologies
- Sectioning of fossils
- X-RAY Diffraction analysis (XRD)

- Logging of sedimentary sections
- Selection of very well preserved fossils (original carbonate)
- Continued development of chronologies
- Sectioning of fossils
- X-RAY Diffraction analysis (XRD)
- Scanning Electron Microscopy (SEM)

Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS)

High resolution palaeoclimatology Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS) Assessment of proxy suitability Royal Holloway University of London THROUGHFLOW

- Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS)
- Assessment of proxy suitability
- Reconstruction of climate parameters pH, Salinity, Temperatures...

- Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS)
- Assessment of proxy suitability
- Reconstruction of climate parameters pH, Salinity, Temperatures...
- Reconstruction of seasonality

- Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS)
- Assessment of proxy suitability
- Reconstruction of climate parameters pH, Salinity, Temperatures...
- Reconstruction of seasonality
- Analysis of effects on seasonality

- Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICP-MS)
- Assessment of proxy suitability
- Reconstruction of climate parameters pH, Salinity, Temperatures...
- Reconstruction of seasonality
- Analysis of effects on seasonality
- Relate to other palaeoclimate data

THROUGHFLOW

THROUGHFLOW

- Laser
- Gas control panel

- Laser
- Gas control panel
- Sample Stage

- Laser
- Gas control panel
- Sample Stage
- Video Screen

- Laser
- Gas control panel
- Sample Stage
- Video Screen
- Beam Path

- Laser
- Gas control panel
- Sample Stage
- Video Screen
- Beam Path
- ICP-MS

Data sources

100 Seconds – 211 data points – 16 masses

Data sources

100 Seconds – 211 data points – 16 masses

Sr/Ca - Temperature Proxy

Fieldwork - East Kalimantan 2010 Logging of sedimentary sections High resolution sampling of well preserved fossils Royal Holloway University of London THROUGHFLOW

Fieldwork – East Kalimantan 2010

- Logging of sedimentary sections
- High resolution sampling of well preserved fossils
- Full assessment of available palaeoenvironmental information in situ

Next stages XRD and SEM analyses (preservation) LA-ICP-MS analysis Development of palaeoclimate proxies Royal Holloway University of London THROUGHFLOW

Next stages

- XRD and SEM analyses (preservation)
- LA-ICP-MS analysis
- Development of palaeoclimate proxies
- Reconstruction of seasonality

Next stages

- XRD and SEM analyses (preservation)
- LA-ICP-MS analysis
- Development of palaeoclimate proxies
- Reconstruction of seasonality
- Further fieldwork based on results of first trip

