

#### Bryozoa Taxonomy and Palaeoecology in the Neogene of SE Asia Emanuela Di Martino Supervisor: Paul D. Taylor

Palaeontology Department NHM London







#### Contents

#### • What is a bryozoan?

 What do we already know about Cenozoic Bryozoans from the Indonesian Archipelago?



Hi! We are bryozoans studied by Emanuela

Bryozoans are colonial invertebrates, which are abundant in modern marine environments, and have been important components of the fossil record. Their calcareous skeleton has a good fossilization potential so they can be important rock-forming material



<u>Dr Claus Nielsen (University of Copenhagen)</u>



- Gut and lophophore
- Muscles
- Funicular system
- Skeleton
- Communication pores
- Ovicell



- Gut and lophophore
- Muscles
- Funicular system
- Skeleton
- Communication pores
- Ovicell



The individual functional units are called '<u>zooids</u>'. Schematic anatomy of anascan cheilostome:

- Gut and lophophore
- Muscles
- Funicular system
- Skeleton

- Ovicell

- Communication pores



- Gut and lophophore
- Muscles
- Funicular system
- Skeleton
- Communication pores
- Ovicell



**Dr Claus Nielsen (University of Copenhagen)** 

- Gut and lophophore
- Muscles
- Funicular system
- Skeleton
- Communication
  - pores
- Ovicell

- Gut and lophophore
- Muscles
- Funicular system
- Skeleton
- Communication pores
- Ovicell



Bryozoans are divided into three classes:

Bryozoans are divided into three classes:

1. Phylactolaemata

(entirely freshwater in distribution), uncalcified



Bryozoans are divided into three classes:

Bryozoans are divided into three classes: 2. Stenolaemata (marine)

Cryptostomida, Cystoporida
 and Fenestrida (Lower
 Ordovician - Upper Permian)

Trepostomatida (Lower
 Ordovician to Upper Triassic)

• <u>Cyclostomatida (Lower</u> <u>Ordovician - Recent)</u>

Colonies encrusting or erect Body wall calcified

Bryozoans are divided into three classes: 2. Stenolaemata (marine)

Cryptostomida, Cystoporida
 and Fenestrida (Lower
 Ordovician - Upper Permian)

Trepostomatida (Lower
 Ordovician to Upper Triassic)

• <u>Cyclostomatida (Lower</u> <u>Ordovician - Recent)</u>

Colonies encrusting or erect Body wall calcified



Bryozoans are divided into three classes: 2. Stenolaemata (marine)

Cryptostomida, Cystoporida
 and Fenestrida (Lower
 Ordovician - Upper Permian)

Trepostomatida (Lower
 Ordovician to Upper Triassic)

• <u>Cyclostomatida (Lower</u> <u>Ordovician - Recent)</u>

Colonies encrusting or erect Body wall calcified



Bryozoans are divided into three classes:

Bryozoans are divided into three classes: 3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine

Bryozoans are divided into three classes: 3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine



Bryozoans are divided into three classes: 3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine



Bryozoans are divided into three classes: 3. Gymnolaemata

Ctenostomata (Lower
 Ordovician - Recent), body wall
 membranous or gelatinous,
 mostly marine



What do we already know about Cenozoic bryozoans from Indonesia? ...Almost nothing ... The number of papers that cite Cenozoic bryozoans is restricted and occurrences are rare! First report Oppenoorth and Gerth (1929) "...part of the rich fauna of Nanggoelen beds ... " Lagaaij (1968a; 1968b; 1969) Keij (1973) Cook and Lagaaij (1973; 1976) • • Franchino et al. (1988) Pouyet & Braga (1993)

## What do we already know about

#### Cenozoic bryozoans from Indonesia?

| Species                      | Age                       | Locality                                 |
|------------------------------|---------------------------|------------------------------------------|
| Filisparsa sp.               | Late Oligocene            | Lombok                                   |
| Exidmonea sp.                | Late Oligocene            | Lombok                                   |
| Idmonea sp.                  | Lower Miocene             | Malaysian Borneo                         |
| Crisia sp.                   | Lower - Middle Miocene    | Malaysian Borneo, Madura                 |
| Lichenopora sp.              | Middle Miocene            | Madura                                   |
| Nellia oculata               | Miocene                   | East Java, Madura, Tanimbar              |
| <i>Nellia</i> sp.            | Late Oligocene            | Lombok                                   |
| Vincularia sp.               | Miocene                   | East Borneo, East Java, Madura, Tanimbar |
| <i>Canda</i> sp.             | Lower Miocene             | Malaysian Borneo                         |
| Scrupocellaria sp.           | Late Oligocene-M. Miocene | Lombok, Madura                           |
| Synnotum sp.                 | Lower Miocene             | East Java, Madura                        |
| Poricellaria sp.             | Middle Oligocene, Miocene | East Java, Madura, Tanimbar, M. Borneo   |
| Steginoporella sp.           | Middle Miocene            | Madura                                   |
| Thalamoporella sulawesiensis | Eocene                    | Sulawesi                                 |
| Thalamoporella sp.           | Middle Miocene            | Madura                                   |
| Chlidonia piriformis         | Lower Miocene             | East Java, Madura                        |
| <i>Cellaria</i> sp.          | L. Miocene                | Malaysian Borneo                         |
| Skylonia sarawakensis        | Early Miocene             | Malaysian Borneo                         |
| Skylonia thomasi thomasi     | Middle Miocene            | Malaysian Borneo, Madura                 |
| Skylonia thomasi madurensis  | Middle Miocene            | Madura                                   |
| Crepis aff. longipes         | Lower Miocene             | East Java                                |
| Catenicella sp.              | Miocene                   | East Java, Madura                        |
| Vasignyella cf. otophora     | Middle Miocene            | Madura                                   |
| Savignyella sp.              | Middle Miocene            | Madura                                   |
| Gemellipora sp.              | Early Miocene             | East Java, Madura                        |
| Pasythea sp.                 | Middle Miocene            | Madura                                   |
| Margaretta sp.               | Lower-Middle Miocene      | Malaysian Borneo, Madura                 |
| <i>Reteporella</i> sp.       | Middle Miocene            | Madura                                   |
| Celleporidae sp.             | Middle Miocene            | Madura                                   |
| Lacrimula asymmetrica        | Miocene                   | W. Madura                                |
| Lacrimula grunaui            | Miocene                   | E. Madura                                |
| Lacrimula similis            | Miocene                   | W. Madura                                |
| Conescharellina sp.          | Miocene                   | E. Madura                                |

11 species
21 genera
Some authors only identified
specimens to family level.

#### My aims...

1) Identify bryozoan taxa present in sampled sections

 Track changes in bryozoan diversity and taxonomic composition and correlate these with facies changes

3) Estimate MART (mean annual range in temperature) values from within-colony variations in zooid size

4) Apply variations in branch diameter of erect bryozoans to estimate relative bathymetry



# Thank vou!