1	A DIVERSE PATCH REEF FROM TURBID HABITATS IN THE MIDDLE
2	MIOCENE (EAST KALIMANTAN, INDONESIA)
3	NADIEZHDA SANTODOMINGO ^{1*} VIBOR NOVAK ² VEDRANA
4	PRETKOVIĆ ³ NATHAN MARSHALL ⁴ EMANUELA DI MARTINO ¹
5	ELENA LO GIUDICE CAPELLI ⁵ ANIA RÖSLER ³ SONIA REICH ² IUAN
6	CARLOS BRAGA ³ WILLEM RENEMA ² KENNETH G. IOHNSON ¹
7	¹ Natural History Museum Department of Earth Sciences, Cromwell Road, SW7
8	5BD London n santodomingo@nhm ac.uk. e di-martino@nhm ac.uk
0	k johnson@nhm ac uk: ² Naturalis Biodiversity Center, Department of Geology, P.O.
10	Roy 0517 2300 RA Leiden The Netherlands vibor novak@naturalis nl
11	box 9517, 2500 KA Letter, The Weinertunus, vibor.novak@naturalis.ni,
11	Departamento de Estrationafía y Paleontología, Campus Eugente Nueva s/n 18002
12	Cranada Spain vodenostro amail com recolaria amail com ibraca aver os
13	Grandad, Spain, Veapreiko@gmail.com, roesianja@gmail.com, joraga@ugr.es,
14	Utrecht University, Department of Earth Sciences, Buaapestiaan 17, 3584 CD
13	Otrecht, The Netherlands, marshall@geo.uu.nl; Institute of Geosciences, Marine
16 17	Micropaleontology, Ludewig-Meyn-Str. 14, D-24118 Kiel, Germany, elgc@gpi.uni- kiel.de
18	*Corresponding author.
19	RRH: MIOCENE TURBID PATCH REEF IN INDONESIA
20	LRH: SANTODOMINGO ET AL.
21	Keywords: corals, biodiversity, paleoenvironmental reconstruction, mesophotic,
22	Coral Triangle
23	
24	ABSTRACT
25	
26	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well-
26 27	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the
26 27 28	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the
26 27 28	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the
26 27 28 29	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and
26 27 28 29 30	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic
26 27 28 29 30 31	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of
26 27 28 29 30 31	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of
26 27 28 29 30 31 32	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of Samarinda. In two newly exposed sections, we analyzed the sedimentology and
 26 27 28 29 30 31 32 33 	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of Samarinda. In two newly exposed sections, we analyzed the sedimentology and distribution of main fossil biota including corals, for aminifers, coralline algae
26 27 28 29 30 31 32 33	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of Samarinda. In two newly exposed sections, we analyzed the sedimentology and distribution of main fossil biota including corals, foraminifers, coralline algae,
 26 27 28 29 30 31 32 33 34 	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of Samarinda. In two newly exposed sections, we analyzed the sedimentology and distribution of main fossil biota including corals, foraminifers, coralline algae, and bryozoans. Seven facies were defined including two dominated by platy
 26 27 28 29 30 31 32 33 34 35 	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of Samarinda. In two newly exposed sections, we analyzed the sedimentology and distribution of main fossil biota including corals, foraminifers, coralline algae, and bryozoans. Seven facies were defined including two dominated by platy
 26 27 28 29 30 31 32 33 34 35 	The Kutai Basin (East Kalimantan, Indonesia) contains a rich and well- preserved Miocene fossil record of small patch reefs that developed under the influence of high siliciclastic input associated with the progradation of the Mahakam Delta. In this study, we reconstruct the biodiversity and paleoenvironments on one of these delta-front mixed carbonate-siliciclastic systems that developed at the Serravallian-Tortonian boundary near the city of Samarinda. In two newly exposed sections, we analyzed the sedimentology and distribution of main fossil biota including corals, foraminifers, coralline algae, and bryozoans. Seven facies were defined including two dominated by platy corals and two by larger benthic foraminifera. Facies distributions were driven

37	front habitats. Despite the turbid conditions, fossil assemblages are highly
38	diverse, including 69 coral species and 28 bryozoan species that occur in coral-
39	dominated facies. Crustose coralline algae were mainly associated with the coral-
40	dominated facies. Larger benthic foraminifera showed broader ecological
41	tolerance within the range represented in the studied sections so were common in
42	most facies. These diverse patch reef ecosystems were able to cope with high
43	siliciclastic input during the early development of the present-day coral reef
44	biota in the Miocene. Further studies of ancient and modern coral communities
45	living in marginal habitats characterized by low light, high turbidity, extreme
46	temperatures, or high nutrients are critical to understand how coral reefs could
47	respond to the ongoing global environmental change.
48	
49	INTRODUCTION
50	
51	Coral reefs are declining worldwide as a result of human activities (Hughes et al.,
52	2003; Hoegh-Guldberg, 2011). Anthropogenic stressors include local activities such
53	as overfishing and water pollution from urban areas, and at broader scale, global
54	warming and declining pH (Bellwood et al., 2004; Hughes et al., 2007). Global
55	warming has changed rainfall patterns (Xie et al., 2010), that in combination with
56	coastal expansion and deforestation around river basins have led to increased
57	discharges of sediments into the oceans and, as a consequence, many of the coral
58	reefs have undergone phase shifts into sediment-tolerant dominated systems (Hughes
59	et al., 2007; Hoegh-Guldberg et al., 2007).
60	Understanding the dynamics of coral reefs living under terrigenous input would
61	contribute to a better understanding of the ecological processes that support reef 2

62	resilience. Terrigenous influx is a key control on the development of coral reefs,
63	because (1) it leads to increased water turbidity, reducing light available for light-
64	dependent organisms; and (2) smothering of biota due to high sedimentation regimes
65	(Rogers, 1990; Nugues and Roberts, 2003; Fabricius, 2005). Numerous studies show
66	that prolonged exposure to sediment discharges from rivers has a negative impact on
67	corals and other reef biota leading to decreased coral reef health (Rogers, 1990;
68	Katwijk et al., 1993; Stafford-Smith, 1993; Fabricius and De'ath, 2001; Fabricius,
69	2005). There is also a generally accepted view that coral diversity tends to be low in
70	reefs substantially influenced by siliciclastic input (Van Woesik et al., 1999;
71	DeVantier et al., 2006; De'ath and Fabricius, 2010). In contrast, other studies
72	challenge the idea of a negative effect of high rates of sedimentation on reef
73	development (Kleypas et al., 1999; Larcombe et al., 2001; Perry et al., 2012; Browne
74	et al., 2012). Indeed, Perry et al. (2012) found that periods of most rapid accretion
75	over the past \sim 700 years coincide with phases of reef development dominated by fine-
76	grained terrigenous sediment accumulation.
77	Paleoecological studies are key to understand the dynamics of the environmental
78	parameters that drive coral reef development and diversity at broader temporal and
79	spatial scales (Perry et al., 2009; Roff et al., 2013). In the geological record there are
80	numerous examples of coral assemblages developing in turbid-water environments
81	since at least the Late Triassic (Rosen et al., 2002) in the Mediterranean (Hayward,
82	1982; Braga et al., 1990; Morsilli et al., 2011; Pomar et al., 2012) and the Caribbean
83	(Mcneill et al., 2000; Klaus et al., 2008). In fact, the fossil record of Southeast Asia,
84	the region that hosts today the most diverse marine ecosystems on Earth also known
85	as the Coral Triangle (Bellwood et al., 2005; Hoeksema, 2007), is rich in well-

86 preserved coral assemblages that mainly developed under high sediment influx

87 (Gerth, 1923; Umbgrove, 1929; Wilson, 2005; Novak et al., 2013).

88 Sedimentology and carbonate dynamics of Miocene reefs in the Coral Triangle 89 have been studied in a regional context (Wilson and Lokier, 2002; Wilson, 2005), 90 revealing the potential high diversity of patch reefs that formed in mixed carbonate-91 siliciclastic deposits (Wilson, 2005). However, little is still known about the species 92 composition, development, and detailed paleoecology of those Miocene turbid 93 environments. Due to urban development in the area, numerous new outcrops are 94 exposed regularly increasing the number of sections through patch reefs beyond those 95 available for study by Wilson (2005). In the current study, we characterize a new 96 example of coral-rich facies that occur within mixed carbonate-siliciclastic systems in 97 the region referred to as the Stadion coral carbonates (Stadion CC) as they are 98 exposed on the highway leading to Stadion Utama Kaltim, which opened in 2008. The 99 main goals of this study are: (1) to describe the assemblages of corals, benthic 100 foraminifera, coralline algae, bryozoans, and mollusks occurring in the Stadion CC 101 sections; (2) to perform a paleoenvironmental reconstruction based on the analyses of 102 the sedimentology and biota; (3) to describe the developmental stages of the Stadion 103 CC sections; and (4) to discuss the importance of terrigenous input as a controlling 104 factor for modern coral reefs. This manuscript is part of a series of papers produced 105 by the Throughflow Project, in a collaborative effort to provide detailed information 106 about biodiversity during the Miocene of East Kalimantan (Johnson et al., this issue). 107

108

GEOLOGICAL SETTING

109

110	The study area is located within the Kutai Basin in East Kalimantan (Fig. 1), a
111	depositional basin that originated during the middle Eocene when the Makassar
112	Straits and Philippines Sea opened (Cloke et al., 1999; Wilson and Moss, 1999).
113	Throughout the Miocene, large amounts of clastic sediments formed rapidly
114	prograding deltas (Hall and Nichols, 2002). In particular, during the Middle Miocene
115	more than 4 km of shelf to fluvial sediments were deposited as the Mahakam Delta
116	system prograded to its current position (Wilson and Moss, 1999; Hall and Nichols,
117	2002; Marshall et al., this issue). The modern Mahakam Delta is located in a low
118	wave-energy coast and its dynamics are tide-dominated so that the deltaic sediments
119	are characterized by high silt and clay contents as little sand is sorted by longshore
120	currents (Allen and Chambers, 1998; Storms et al., 2005).
121	The Miocene Mahakam Delta sequence (Fig. 2A) begins with shale-dominated
122	shelf deposits and includes several carbonate intervals that are exposed as prominent
123	ridges such as the Batu Putih patch reefs (Moss and Chambers, 1999; Wilson, 2005;
124	Lokier et al., 2009; Marshall et al., this issue). Stratigraphically above the Batu Putih
125	patch reefs deltaic sedimentation takes place and sandstones become progressively the
126	dominant lithology often directly above coal beds. Based on magnetostratigraphic
127	analyses that correlate the Samarinda polarity pattern and the geomagnetic polarity
128	timescale an average sedimentation rate of \sim 75 cm/kyr has been estimated
129	throughout the Samarinda sequence (see Fig. 11 in Marshall et al., this issue). The
130	Stadion CC are a second set of fossiliferous carbonates (Fig. 2). Within 20 m above
131	the Stadion CC, fluvial sedimentation resumes as thick sandstones and fossil barren
132	shales (Marshall et al., this issue).
133	The age of the Stadion locality has been placed close to the Serravallian-Tortonian
134	boundary (11.6 Ma) using integrated magnetostratigraphy and biostratigraphy

135 (Marshall et al., this issue). Thus, the Stadion CC are younger than other Samarinda136 carbonate sections previously studied by Wilson (2005).

- 137
- 138

Terminology

139

140 Facies descriptions in this work follow the nomenclature and characterizations 141 developed by Insalaco (1998). These terms are an extension of the boundstone 142 category applied by Dunham (1962) to facies that are dominated by *in situ* 143 bioconstructors (corals, sponges, bryozoans, etc.) in growth position that may or may 144 not form a true framework. From this approach, the term 'growth fabric' is used to 145 describe the structure of coral facies. The term 'framework', sensu stricto, can be 146 applied when a degree of rigidity, wave resistance, and intergrowth could be inferred 147 for the growth fabric (Insalaco, 1998). The Insalaco nomenclature is based on the 148 growth form of scleractinian corals as the primary descriptor, therefore a facies 149 dominated (>60%) by branching corals is named a pillarstone, by platy to tabular 150 corals (width to height ratio ≤ 30 to $\sim 3:1$) is a platestone, by thin-platy to sheet-like 151 corals (width to height ratio >30:1) is a sheetstone, by domal massive corals are 152 domestones, and those facies dominated by a variety of coral growth morphologies 153 are mixstones. Regarding the geometry of the bioconstructions, the term 'biostrome' 154 is applied to facies that are distinctly bedded and do not thicken into lenses so that 155 their upper and lower surfaces are flat and parallel. In contrast, 'bioherm' is used to 156 define rigid structures that caused modification of seabed topography and therefore 157 are likely to have distinct ecological zonation (Cummings, 1932).

158 Although extensively used in paleoenvironmental interpretations, the terms 'reefs' 159 and 'patch reefs' have countless, contradictory, and ambiguous definitions (see 160 review in Fagerstrom, 1987; Rosen, 1990). Therefore, we constrained our direct 161 comparisons to previous studies in the region (Moss and Chambers, 1999; Wilson and 162 Lokier, 2002; Wilson, 2005, 2008; Lokier et al., 2009; Novak et al., 2013). In East 163 Kalimantan, the term 'patch reef' has been applied to modern coral communities 164 characterized as small isolated assemblages, which develop in shallow waters on the 165 delta-front eight kilometers from the mouth of the Berau River (Tomascik et al., 166 1997). A similar approach was used for the interpretation of Miocene fossil coral 167 assemblages located in the delta-front of the Mahakam delta, in which the term 'patch 168 reef' has been applied to carbonate structures that "developed in shallow waters, form 169 low-relief coral buildups, lack rigid frameworks, and had gently sloping margins of a 170 few degrees" (Wilson, 2005). It is important to note that Wilson's definition implies 171 the use of the term 'reef' in a broad sense due to the 'lack of rigid framework' of the 172 carbonate structures; likewise, in the present study the term 'patch reef' is used 173 according to Wilson (2005), to describe coral carbonates regardless the lack/presence 174 of rigid frameworks (Moss and Chambers, 1999; Wilson and Lokier, 2002; Wilson, 175 2008; Lokier et al., 2009; Novak et al., 2013). 176 From our descriptive approach, we suggest to treat 'biostrome' independently from 177 the term 'coral carpets' proposed by Riegl and Piller (2000b, 2002), because the use 178 of coral carpets implies an environmental interpretation by analogy with modern coral

179 settings. While coral carpets can be preserved as biostromes, not all biostromes have

- 180 been interpreted as being deposited by coral carpets (e.g. algal biostromes, Bosence,
- 181 1983; Benisek et al., 2009; bryozoan biostromes, Taylor and Zaborski, 2002). These

182	concepts provide the background for further interpretations of the different facies
183	within the Stadion CC.
184	
185	METHODS

187 The Stadion CC are exposed in two outcrops, Stadion CC-1 located at 0.585 S, 188 117.120 E (Fig. 1C) and Stadion CC-2 at 0.586 S, 117.120 E (Fig. 1D) that are 150 m 189 apart, at the crossroad of the stadium highway and a coal mine road. The outcrops 190 Stadion CC-1 and Stadion CC-2 correspond to the Throughflow project localities 191 TF57 and TF51, respectively. The two studied sections are 8-10 m thick, with an 192 eastward dip of 55°, and were laterally exposed for a few tens of meters but partially 193 covered by vegetation. Both sections were logged and sampled to identify lithological 194 units, sedimentary structures, relative abundance of carbonaceous content, sediments 195 and fossil components, and main taphonomic features. Photomosaics were taken to 196 describe morphology and lateral variation (Figs. 1C-D), and the units were correlated 197 and summarized in two logs (Fig. 2B) and a schematic sketch of the facies 198 architecture (Fig. 3). Lithological samples were collected in each unit for further 199 microfacies analysis of 21 thin sections (28x48 mm). Lithology and facies 200 descriptions follow Folk (1980) for siliciclastics, and Dunham (1962) and Insalaco 201 (1998) for carbonates. Carbonate contents of the sediment matrix were determined 202 using Total Inorganic Carbon (TIC) analysis; for this assessment 50 mg of each 203 sample was ground and then analyzed with the front-end acid digestion instrument 204 CM 5240, which converts inorganic carbonate species into CO_2 . The generated CO_2 is

transported into a CM 5014 Coulometer that measures the TIC percentage from which

206	the CaCO ₃ percentage was calculated. Standard used for the carbon calibration is 12%
207	carbon.
208	
209	Fossil Content
210	
211	The Stadion CC sections have mainly corals, foraminifers, coralline algae,
212	bryozoans, and mollusks. In addition, some echinoid spines, serpulid tubes, small
213	brachiopods, and crustacean chelae were found within the sediments or cemented to
214	coral surfaces. In this study, only the former five main groups were considered based
215	on their abundance and the taxonomic expertise of the research team. The primary
216	datasets used to describe the distributions of these five main taxa within the units
217	include field observations, hand specimens and bulk samples collected from the
218	fossiliferous units, and thin sections. Bulk samples consisted of approximately 5 to 7
219	kg mix of sediment and fossil material that were dug out from each unit in the
220	outcrops; once in the laboratory the bulk samples were soaked in water, washed, and
221	sieved through 5 mm, 2 mm, 500 μm and 125 μm sieves. Fossil specimens were
222	identified, mostly to genus or species, according to their preservation and taxonomic
223	framework available for each group. Some taxa were left in open nomenclature
224	pending detailed taxonomic description that is beyond the scope of this study.
225	Representative specimens of corals, bryozoans and mollusks are deposited at the
226	Natural History Museum (London), larger benthic foraminifera at the Naturalis
227	Biodiversity Center (Leiden), and coralline algae at the Departamento de Estratigrafía
228	y Paleontología of the University of Granada.
229	Corals were studied from 53 bulk samples as well as specimens individually
230	collected from the outcrop surface. Bulk samples were collected randomly within

231	each unit and also along 4-5 m long line transects. Transects were placed at each
232	observed change of composition within each unit, thus nine transects were measured
233	at Stadion CC-1 and equivalent seven transects at Stadion CC-2 (Fig. 3). High
234	taxonomic richness and the lack of a rigorous regional taxonomic framework for
235	Miocene reef corals restricted our ability to identify taxa in the field, so transects were
236	used to estimate percentages of the different types of coral growth forms, including
237	massive, branching (ramose and phaceloid), solitary, and platy, the later one sub-
238	classified as thin-platy and platy tabular (Insalaco, 1998; Rosen et al., 2002). The
239	relative abundance of sediment and corals in each unit was estimated along each
240	transect. Specimens recovered from bulk samples were counted and weighed, and
241	relative abundances were estimated as a percentage of each taxon per unit (Appendix
242	A). External morphological characters of corals observed with a Leica microscope
243	MZ16, such as colony forms and calice features were used for taxonomic
244	identifications in the laboratory and taxa names were assigned following the recent
245	revision on Indo-Pacific fossil corals by Johnson et al. (this issue). Acropora
246	specimens were identified into 'species groups' (Wallace, 1999). Well-preserved
247	corals weathered out at the base of the outcrops were also collected to enhance
248	taxonomic lists and identifications.
249	Larger benthic foraminifera were examined in 11 thin sections (28x48 mm) and as
250	specimens picked from 14 bulk samples (500 μ m to 2 mm fractions; ~300
251	foraminifera per sample). Taxon abundances were estimated relative to the total
252	number of foraminifera identified in each sample or thin section (Appendix B). A
253	semi-quantitative approach was applied to evaluate benthic foraminiferal assemblages
254	within the 125-500 μ m fraction from each sample. In each sample, ~100 specimens

255	were sorted, identified, and scored as abundant if they represented more than 40%,
256	common between 15 and 40%, frequent from 5 to 15%, and rare if less than 5%. The
257	percentage of planktonic/benthic foraminifera was also calculated (Appendix C).
258	Coralline algae were selectively collected in the field and subsequently studied in a
259	total of 32 ultra-thin sections (10-15 μ m thick). Relative abundances of taxa of
260	coralline algae were estimated by measuring the proportional cross-sectional area
261	occupied by each taxon in relation to the total coverage of coralline algae (Perrin et
262	al., 1995). Structures built by coralline algae such as crusts, rhodoliths, and
263	foralgaliths that are compact nodules with foraminifers (Prager and Ginsburg, 1989),
264	were recognized in hand specimens and in thin sections. Growth forms were
265	described using the terms of Woelkerling et al. (1993).
266	Bryozoans were found encrusting the bases of platy corals and coral branches, and
267	as colony fragments picked from sediment fractions larger than 500 μm from ten bulk
268	samples. Bryozoan specimens were identified using a stereomicroscope or SEM to
269	genus or family. Relative abundances of taxa were estimated by counting the number
270	of encrusting colonies on the corals and fragments of erect species scattered in the
271	sediments. The proportion of corals encrusted by bryozoans was also estimated by
272	comparing the number of coral specimens and/or fragments encrusted by bryozoans
273	and the total number of coral specimens and/or fragments contained in the bulk
274	samples. Colony growth-forms of bryozoans included two main categories, encrusting
275	and erect, and their respective proportions were calculated in terms of both species
276	richness and specimen abundance.
277	
278	Statistical Analysis

280	To assess changes in the community composition among facies and between the
281	two sections, non-metric multidimensional scaling (NMDS) ordinations were
282	produced for corals and larger benthic foraminifera. Coral abundances were estimated
283	as weight percentages standardized using the "Wisconsin double standardization"
284	where species are first standardized by maxima and then site by site totals (Oksanen
285	et al., 2013). NMDS plots based on transformed data from percentages of the number
286	of fragments and/or colonies showed a similar pattern of clustering to that obtained
287	from their respective weight percentages; hence the former plots are not included
288	here. Analyses of similarity (ANOSIM) were used to test for intergroup differences,
289	and similarity of percentages analysis (SIMPER) was used to identify species that
290	were most responsible for the discrimination between facies and outcrops. Statistical
291	analyses were performed using the vegan package (Oksanen et al., 2013) within the R
292	statistical software environment (R-Core Team, 2013)
293	
294	RESULTS
295	
296	Seven main lithological units were recognized and correlated across both sections
297	(Fig. 2B). Each of the lithofacies extended laterally at least 150 m, as along-strike
298	exposures were identified no farther than 50 m north from Stadion CC-1 and 300 m
299	south from Stadion CC-2. Therefore, the horizontal size of the structure could be
300	interpreted as larger than 150 m and less than 300 m.
301	
302	Facies Types
303	

A combined analysis of the sedimentary composition and main fossil contents of the seven lithological units showed that each unit corresponds to a distinctive facies type (Figs. 2B, 3-4). Table 1 shows a summary of the most relevant characteristics of the facies and their respective fossil contents.

Laminated Siltstone Facies.—This facies is characterized by a laminated siltstone with thin mudstone layers (3-10 mm) and occasional ripple marks (Fig. 4A). The laminated siltstone facies can be recognized in lithological Unit 1. The lower part of the unit is intensely bioturbated. Towards the top, the siltstone alternates with finegrained sandstones and thin carbonaceous shale layers (< 1 cm). Invertebrate fossils are absent. The exposed facies is about 1 m thick in both sections, with its base covered.

315 *Carbonaceous Shale Facies.*—This facies is characterized by dominance of

316 carbonaceous shale with occasional thin clay and silt layers (Fig. 4B). The

317 carbonaceous shale of Unit 2 is 20 cm thick in Stadion CC-1 and 40 cm thick in

318 Stadion CC-2. This unit has a sharp contact with the laminated siltstone facies at the

319 base and a gradual change into the mixed siliciclastic-carbonate facies towards the

320 top. Carbonaceous content decreases upwards as clay and silt content increases. Small

321 pieces of amber were observed in the lower part of this unit.

322 *Bioclastic Sandstone Facies.*—This facies is characterized by larger benthic

323 for aminifera and mollusk bioclasts in a predominantly moderate to well-sorted fine

- 324 sand matrix, composed of a mix of subangular to subrounded fine-grained quartz.
- 325 This facies occurs in Unit 3, which it is a 20-cm thick transitional bed of mixed
- 326 siliciclastic and bioclastic carbonate components (Fig. 4C). Contacts at the base and
- 327 the top are gradual. Compared to the underlying facies, the carbonaceous content is

328 lower (<10 %) while the average carbonate content is higher (36 %). Larger benthic

329 foraminifers comprise about 15% of the sediment (Fig. 4D). A few planktonic

330 for a fo

331 Coral Platestone Facies.—This mixed carbonate and siliciclastic facies is 332 characterized by a coral framework with thick-platy corals that develop a platestone 333 growth fabric (sensu Insalaco, 1998). This facies can be recognized in Unit 4, where 334 corals and other bioclasts occur in a gray matrix with an average of 45% CaCO₃ 335 (Figs. 4E-F). The thickness of this unit is 1.1 m at the Stadion CC-1 and 3 m at the 336 Stadion CC-2. The transition from the underlying bioclastic sandstone facies is 337 gradual from sand to a silt-rich sediment matrix with abundant fossils. Corals 338 constitute the main carbonate-forming component of this unit (60-70%, Fig. 5). Most 339 corals are densely packed in growth position, with their calicular surfaces facing 340 upwards and bioclastic sediment in the interstices (Fig 4E). Relative abundances of 341 the different coral growth forms change from the base to the top of the unit (Fig. 5). 342 Corals first appear in transect 2 (Fig. 5), mainly as thin-platy forms (1 to 7 mm thick) 343 and delicate ramose corals (1 to 6 mm in diameter). More robust forms became 344 abundant in the middle of this unit, including ramose corals (up to 16 mm in 345 diameter), platy-tabular (4 to 7 cm thick), and small massive forms (10 to 15 cm 346 high). At the upper part of the unit, the growth fabric is composed by relatively 347 similar proportions of small massive (21.2%), phaceloid (17%), and platy-tabular 348 corals (16.4%) (Fig. 5). Larger benthic foraminifers appear as a subordinate 349 component (10%) within the siliciclastic matrix. Coralline algae occur in low 350 abundances (5%), mainly as encrusting plants. The majority of mollusks recovered 351 from the Stadion CC belong to this unit. Some echinoid spines were also observed 352 within the sediments.

353	Foraminiferal Packstone Facies.—This facies is characterized by packstone
354	dominated by larger benthic foraminifers (Figs. 4G-H). It occurs in Unit 5 with
355	relatively uniform thickness of 1 m at Stadion CC-1 and 1.2 m at Stadion CC-2. It has
356	the highest carbonate content (72%). The contacts with the units below and above are
357	sharp. Corals were observed as a subordinate component (15%), preserved in growth
358	position, and evenly distributed among thin-platy, massive, tabular, and ramose
359	forms. From the base to the top, no changes in the fossil assemblages were observed.
360	Coralline algae, Halimeda fragments, echinoid spines, and entirely recrystallized
361	gastropods occur as minor components.
362	Coral Sheetstone Facies.—This facies is characterized by dominant thin-platy
363	corals forming a sheetstone fabric (sensu Insalaco, 1998). It occurs in Unit 6 where
364	corals are the main component (40-60%) of this mixed carbonate-siliciclastic bed
365	(Fig. 4I). The thickness is 1.6 m at Stadion CC-1 and 1.8 m at Stadion CC-2.
366	Carbonate content within the sediment matrix is on average 30%, decreasing from
367	40% to 11 % up section. The upper part of the unit is characterized by a decline in
368	coral abundance. Among the corals, thin-platy forms dominate (65-95%). These thin-
369	platy corals are mostly 1-5 mm thick, and densely packed in growth position. Platy-
370	tabular corals (30%) up to 3 cm thick were also observed, mainly towards the top of
371	the bed, and some clusters of branching corals were sparsely distributed along the
372	transects. The siliciclastic sediment matrix is yellow and clay-rich with abundant
373	larger benthic foraminifers (20-30%). Crustose coralline algae occur in low
374	proportions (5%), mainly encrusting corals together with foraminifers (Fig. 4J).
375	Bryozoans are commonly found encrusting the under surfaces of thin-platy corals,

376 colonizing 27% of the corals. Sparse cidaroid echinoid spines, gastropods and 377 fragments of bivalves also occur. 378 Clay-shale Facies. — This facies is characterized by dominant clay sediments and 379 the absence of fossils. This facies is formed in the uppermost Unit 7 exposed at the 380 Stadion CC sections. Although the top of the outcrop is covered by vegetation with no 381 other deposits exposed, several hundred meters of thick deltaic sandstones are visible 382 further up the section (Cibaj, 2009). 383 384 Fossil Assemblages 385 386 Rich fossiliferous biofacies are characteristic in the four middle facies of the 387 Stadion sections, including the coral-dominated facies (coral platestone and 388 sheetstone) and foraminifer-dominated facies (bioclastic sandstone and foraminiferal 389 packstone). The other facies are barren in fossils. Percentages of abundance for the 390 five main fossil groups studied in the Stadion sections are illustrated in Fig. 5 and 391 principal taxa are summarized in Table 1. Most fossil taxa recovered from the Stadion 392 CC sections have complete or partial calcitic skeletons with higher potential of 393 preservation, such as coralline algae (Bosence, 1991), foraminifera (Lowenstam and 394 Weiner, 1983), octocoral sclerites (Bayer and Macintyre, 2001), echinoderm spines 395 (Su et al., 2000), and polychaete tubes (Vinn et al., 2009), among others. Even though 396 scleractinian corals deposit aragonitic skeletons, those were recrystallized and 397 transformed from original aragonite into secondary calcite as it is commonly found in 398 corals older than Pleistocene age (Constantz, 1986; Mcgregor and Gagan, 2003; 399 Reuter et al., 2005).

400	Corals.— A high richness of coral species was recorded from the studied sections
401	(Table 1; Fig. 6). A total of 69 species belonging to 41 genera were identified from
402	the 4686 studied specimens. They include 66 species from 38 genera of scleractinians.
403	Other taxa were the hydrozoan Millepora sp., and the octocorals Heliopora sp. (Fig.
404	6G) and Isis sp. (Appendix A). A few octocoral sclerites (3-5 mm long) were also
405	recovered. A small percentage of the specimens (<1%) could not be identified. The
406	157 specimens collected from the outcrop surface only yielded two additional taxa,
407	Leptoseris aff. mycetoserioides and Lobophyllia sp. The latter two taxa could not be
408	assigned to any specific facies so were left out of the statistical analyses.
409	Statistical ordinations showed that the coral assemblages were significantly
410	different between the coral sheetstone and coral platestone facies (Fig. 7; ANOSIM
411	R=0.278, p-value=0.022) but not between the Stadion CC-1 and Stadion CC-2
412	sections (R= 0.078, p-value= 0.206). External morphological features of corals were
413	well preserved in the coral platestone facies allowing taxonomic identifications.
414	Internal microstructures of coral skeletons were highly recrystallized and some
415	specimens have a friable consistency. The reconstruction of the coral succession
416	shows that the first corals appeared at the base of the coral platestone facies in
417	transect 2, about 20 cm above the carbonaceous shale, including Porites sp. 1 (Fig.
418	6A), Leptoseris sp. 7, and Heliopora sp. Coral abundances and richness increased to
419	22 in transects 3 and 5, reaching its maximum number of 31 species in transect 4.
420	Within this facies, platy tabular forms of Progyrosmilia sp. 2 (Fig. 6C) and
421	Astreopora spp. were dominant in the Stadion CC-2, while small massive colonies of
422	Porites sp. 3 (Fig. 6E) were typical in the Stadion CC-1. At the top of the coral
423	platestone facies, the phaceloid taxa Galaxea spp. (Fig. 6F) and ramose Porites sp. 2

424 and *Dictyaraea* sp. were more abundant. In total for the coral platestone facies, 48 425 species from 30 genera were identified, with 24 species common to both sections. 426 Corals were poorly preserved in the foraminiferal packstone facies and highly 427 cemented into the matrix. No new taxa were found in this facies, and 43 coral species 428 that were present in the previous coral platestone facies did not occur in this facies. 429 Only five species were identified from samples collected in transect 6, from which 430 massive Porites sp. 3 (44%), ramose Porites sp. 2 (30.5%), and platy Porites sp. 1 431 (9.8%) were the most abundant corals.

432 With a total of 56 species, the highest coral richness and the best-preserved 433 specimens were observed in the coral sheetstone facies, mainly dominated by thin-434 platy forms of *Porites* sp. 1, the agariciids *Leptoseris* spp. (e.g. Fig. 6J) and *Pavona* 435 spp. (e.g. Fig. 6L), the merulinid *Cyphastrea* spp. (e.g. Fig. 6M), and the siderastreid 436 *Psammocora* sp. (e.g. Fig. 6N). Twenty-three coral species were present in the upper 437 part of coral sheetstone facies, including Porites sp. 1, Cyphastrea cf. imbricata, and 438 other agaricids. Thirty-seven species were shared with the previous coral platestone 439 facies, and except for the small massive *Porites* sp. 3, all species from the underlying 440 foraminiferal packstone facies were present in the coral sheetstone facies.

441 *Foraminifera.*—In the coarser fractions (0.5-2 mm and >2 mm), assemblages of

442 larger benthic foraminifera varied among the lithofacies (Table 1, Fig. 5, Appendix

B). Ordination analyses showed two distinctive groups (Fig. 7B), a first one preserved

444 in the bioclastic sandstone, coral platestone, and foraminiferal packstone facies and a

second group found in the coral sheetstone facies (ANOSIM R= 0.706, p-value=

446 0.001). No significant differences were found between the two Stadion CC sections

447 (ANOSIM R= 0.461, p-value <0.001). Small and robust forms of *Amphistegina* and

448 Nephrolepidina (Fig. 8A) dominated in the bioclastic sandstone facies, with rare

449	occurrences of thin and flatter Lepidosemicyclina. In the coral platestone facies
450	richness increased slightly, with Amphistegina and Nephrolepidina still dominant,
451	albeit with increased abundance of Lepidosemicyclina, and subordinate Operculina.
452	Although very abundant, they were less rich in the foraminiferal packstone facies than
453	in the coral platestone facies, and again contained abundant Amphistegina, with
454	subordinate Nephrolepidina and Lepidosemicyclina. In the uppermost fossiliferous
455	unit, the coral sheetstone facies, there was an abrupt change in larger benthic
456	foraminifers composition as Lepidosemicyclina bifida (Fig. 8C) became the most
457	abundant taxon with subordinate Nephrolepidina (e.g. Fig. 8A), Amphistegina and
458	Operculina, and rare occurrences of flat discoidal Cycloclypeus annulatus (Fig. 8B).
459	Among the 125 μ m fractions recovered from the bulk samples, benthic
460	foraminifera were present in the bioclastic sandstone, coral platestone, and coral
461	sheetstone facies, but absent from the clay-shale facies (Appendix C). In general,
462	foraminiferal tests were poorly preserved and taxonomic identifications were only
463	possible at the genus level. Six taxa were identified, from which Amphistegina spp.
464	(Fig. 8D) were the most abundant, followed by Operculina spp. (Fig. 8E), Elphidium
465	spp. (Fig. 8G) and Cibicidoides spp. (Fig. 8H). Small differences could be noticed
466	among the facies types: abundances of Cibicidoides and Elphidium increased from
467	frequent at bioclastic sandstone and coral platestone facies, to common in coral
468	sheetstone facies. Similarly, miliolids (Fig. 8F) were rare in the bioclastic sandstone
469	and coral platestone facies but common in coral sheetstone facies. Samples from the
470	coral sheetstone facies were moderately well preserved and contained the highest
471	benthic foraminiferal richness.

472 Coralline Algae.—Abundances, growth forms, and groups commonly associated 473 with coralline algae assemblages in the successive carbonate units are shown in Table 474 1 and detailed data per taxon in the Appendix D. Coralline algae were present as a 475 subordinate component in the coral platestone, foraminiferal packstone, and coral 476 sheetstone facies. Abundances were higher in coral platestone and coral sheetstone 477 facies, mainly encrusting corals, forming foralgaliths, and also as fragments within 478 the matrix (Fig. 5). Assemblages and growth forms of coralline algae did not vary 479 significantly between the coral-dominated facies, but both were characterized by 480 abundant mastophoroids (Fig. 9), mainly Neogoniolithon spp. (Figs. 9A-B). In the 481 foraminiferal packstone facies, coralline algae were less abundant and very 482 recrystallized limiting taxonomic identification. 483 Bryozoans.—Although bryozoans were restricted to the coral sheetstone facies 484 (Table 1, Fig. 5), they included 28 species, with 3 cyclostomes, 25 cheilostomes (9 485 anascan-grade and 16 ascophoran-grade species), and rare ctenostome borings visible 486 on the undersurfaces of corals (Appendix D). Species richness and specimen 487 abundance was very similar in the two sections: 25 species (450 specimens) at the 488 Stadion CC-1 and 24 species (475 specimens) at the Stadion CC-2. Twenty-one of the 489 species that occur in both sections were the most abundant taxa. In contrast, the four 490 species found exclusively in Stadion CC-1 and the three species unique to Stadion 491 CC-2 were represented by a few or even a single colony. The dominant taxa among 492 erect colonies were the articulated anascan Vincularia berningi (11%) and the 493 fenestrate ascophoran Triphyllozoon sp. (7%), both found as scattered fragments and 494 as specimens cemented to coral surfaces and a few colony bases. Among encrusters 495 the anascans Steginoporella sp. (27%; Fig. 10B), ?Crassimarginatella sp. (3%),

496	Cranosina rubeni (Fig. 10A), Antropora cf. subvespertilio (Fig. 10D), the cribrimorph
497	Puellina spp., and the ascophorans Reptadeonella sp. nov. (Fig. 10C) and
498	Hippopodina cf. feegeensis (5%) usually developed large colonies on coral
499	undersides; only a few specimens were observed encrusting the surfaces of ramose
500	corals. Unidentifiable cheilostome species accounted for 33% at Stadion CC-1 and
501	17% at Stadion CC-2, mainly represented by fenestrate phidoloporid fragments.
502	Most taxa were encrusters (78%), mostly with two-dimensional colonies of low
503	relief; 21% of the species were erect, mostly flexible because of jointing and anchored
504	to a substrate by rootlets, or rigid fenestrate with a cemented base; a single
505	ctenostome species occurs as borings in the corals. Almost the same proportions of
506	growth-forms occurred in terms of specimen abundance: 81.6% of specimens were
507	encrusters, 18.3% were fragments of erect species, and only one specimen (0.1%) was
508	boring a coral substrate (Fig. 5).
509	Mollusks.—Eighty-six poorly preserved specimens were recovered, including
510	representatives of three bivalve families and at least eleven gastropod families
511	(Appendix F). Aragonitic mollusks are rare and mainly represented by very small,
512	incomplete, and highly recrystallized shells. Gastropods with an outer calcitic shell
513	layer and/or relatively thick shells (e.g., Trochidae and Turbinidae; Gainey and Wise,
514	1980; Beesley et al., 1998) are comparatively common in the Stadion CC sections.
515	The majority of bivalves present at the studied sections are epifaunal taxa that
516	aggregate calcitic foliated, and therefore relatively hard and chemically resistant
517	shells (Kennedy et al., 1969; Taylor and Layman, 1972).
518	Most mollusks were recovered from coral platestone facies, in which 92% of the
519	total number of specimens was collected. Bivalves were predominately preserved as
520	fragments and include oysters (e.g. <i>Lopha</i> s.l.), pectinids, and one specimen of the 21

521	Lucinidae ?Anodontia (Pegophysema). The most common gastropod families were
522	Turritellidae (n = 13), Trochidae (? <i>Euchelus</i> sp., n = 12) and Turbinidae (<i>Astraea</i> sp.,
523	n = 6; opercula of two species). Other identifiable families were Cerithiidae,
524	Scaliolidae, Rissoidae, Iravadiidae, Triphoridae, and Pyramidellidae, each with very
525	low abundances (n < 4). Gastropods were represented by herbivores, suspension
526	feeders, and parasites (Fig. 5). Predatory taxa are entirely lacking, although they are
527	dominant in modern reef-associated gastropod faunas (Taylor, 1977) due to the
528	preservation constrain.
529	
530	DISCUSSION
531	
532	Most of the fossils found in the Stadion sections are light-dependent benthic
533	organisms, including zooxanthellate corals, larger benthic foraminifera and coralline
534	algae, that lived as distinct communities during deposition of bioclastic sandstone,
535	coral platestone, foraminiferal packstone, and coral sheetstone facies (units 3 to 6),
536	indicating that in those settings light reached the benthic environment. The varying
537	composition of the communities in these facies suggest a variation in light levels,
538	most likely related to changes in depth and/or alterations in terrestrial input (Perrin et
539	al., 1995; Wilson, 2005, 2012; Bassi and Nebelsick, 2010; Novak et al., 2013).
540	Terrestrial input can drive the response of light-dependent biota based on: (1) the
541	amount of siliciclastic input that can vary from low to high; (2) frequency of input
542	that can be constant or episodic; (3) grain-size; and (4) associated nutrient input
543	(Sanders and Baron-Szabo, 2005; Wilson, 2005; Lokier et al., 2009). Disentangling
544	the role of each factor involved with terrestrial input effects is not a straightforward
545	task, especially because they interact with other factors such as depth and

546	hydrodynamic regimes to produce similar effects on the amount of light available to
547	the benthic community. For example, similar low-light levels could result from at
548	least three different scenarios: constant fine-grained sediment input in shallow waters,
549	low siliciclastic input but high resuspension of sediments in shallow waters, or no
550	terrigenous input at all in deeper waters. In this sense, paleoenvironmental
551	interpretations based on the studied communities of light-dependent organisms are
552	relative rather than absolute, and only possible if independent evidence obtained per
553	fossil group is taken into account to subsequently capture further elements with the
554	analysis of the assemblages as a whole. In this study, the growth forms and taxonomic
555	composition of fossil assemblages were analyzed because these two aspects are key to
556	interpret paleoenvironments as it has been shown in previous studies for scleractinian
557	corals (Perrin et al., 1995; Pandolfi, 1996; Perrin, 2000; Klaus et al., 2008; Johnson et
558	al., 2009), larger benthic foraminifera (Hallock and Glenn, 1986; Hottinger, 1997;
559	Hohenegger et al., 1999; Renema and Troelstra, 2001), and coralline algae (Bosence,
560	1983; Perrin et al., 1995; Braga et al., 2009).
561	
562	Facies Interpretation and Paleoenvironmental Evolution
563	
564	The Stadion CC were deposited during a brief interval of time within the 3 km
565	thick Samarinda section that includes a succession of alternating shallow marine,
566	deltaic, and fluvial intervals and a depositional time framework between 16 and 11
567	Ma (Marshall et al., this issue). The development of the Stadion CC is part of a
568	transgressive interval characterized by an important change in relative water depth
569	and sedimentation rates that created marginal marine environments with deltaic sand
570	and lagoonal coal cycles (Marshall et al., this issue). The Stadion CC signals a

571 furthering of this trend by introducing reef taxa that require fully marine

572 environments and relatively lower turbidity (Cibaj, 2009; Marshall et al., this issue). 573 The observed geometry and lateral continuity of the deposits that extend at least 150 574 m between the two studied sections suggests that the Stadion CC could have 575 developed as a low-relief patch reef (Moss and Chambers, 1999; Wilson, 2005). The 576 main factors controlling this patch reef were most likely depth and episodic variations 577 in sedimentation rates and grain size of terrigenous input (Fig. 11). 578 At the base of the Stadion CC sections, the lack of marine fossils in the laminated 579 and occasionally rippled siltstones and fine-grained sandstones facies suggests a low-580 energy depositional environment within the delta plain (Allen and Chambers, 1998). 581 Increase in marine influence leading to the development of coastal swamps or 582 estuarine mangrove environments can be inferred from the appearance of thin 583 carbonaceous layers, first occasionally at the top of the laminated siltstone facies and 584 becoming more abundant until they form the distinctive carbonaceous shale facies 585 (Figs 11A-B). Although a definitive interpretation of mangrove facies would require 586 to satisfy the criteria proposed by Plaziat (1995), recent research has shown that coal-587 bearing sequences of Miocene age in the Kutai Basin evolved from lower delta plain 588 deposits of *Nipa* palm in swamp environments and brackish water-fed mangroves 589 (Widodo et al., 2010; Gastaldo, 2010). 590 Following on from these low-energy swamp conditions, the first occurrence of 591 larger benthic foraminifera marks the transition into a fully marine environment 592 during deposition of bioclastic sandstones (Fig 11C). The foraminiferal assemblage in 593 the bioclastic sandstone facies, dominated by smaller and robust specimens of 594 Amphistegina and Nephrolepidina with subordinate miogypsinids and Operculina,

supports the interpretation of shallow-water conditions and the increase of energy

levels in the environment (Hallock and Glenn, 1986). Similar communities of
foraminifers remain in the subsequent coral platestone facies, even though up section
smaller and more robust forms decreased in favor of the appearance of slightly thinner
and elongated forms.

600 In the coral platestone facies corals are preserved in growth position indicating 601 autochthonous deposition and fully marine conditions. The platy morphology of 602 corals has been recognized as an adaptation to low-light environments (Rosen et al., 603 2002; Sanders and Baron-Szabo, 2005) that could have resulted as a response to 604 terrigenous input indicated by the silty siliciclastic matrix of the facies. However, at 605 these initial stages relatively low silty siliciclastic input can be interpreted because 606 corals could develop certain degree of robustness as platy-tabular and small massive 607 colonies (Figs. 6C-E, 11D); in addition, relatively constant sedimentation rates can be 608 proposed because corals do not present signs of partial mortality during development. 609 The subsequent appearance of phaceloid and ramose morphologies towards the top of 610 the coral platestone facies can be indicative of an environment with relatively higher 611 sedimentation rates of silt-size siliciclastics (Perrin et al., 1995; Sanders and Baron-612 Szabo, 2005). The initial stage of the coral platestone facies was characterized by low 613 coral abundances (<10%) and dominance of thin-platy forms (Fig. 5), suggesting 614 plausible constratal framework (Insalaco, 1998) with corals barely exceeding the rates 615 of siliciclastic deposition. Once this pioneer coral community was established, the 616 framework might have become partially suprastratal as suggested by higher 617 abundances of corals arranged with more colony intergrowth and the appearance of 618 small massive and branching growth forms (Insalaco, 1998). However, any growth 619 above sea floor was limited to a few decimeters resulting in the relatively flat parallel 620 geometry of the bed after compaction. Gastropods from the coral platestone facies

621 such as Turbinidae, Trochidae, Cerithiidae, and Turritellidae are typical inhabitants of 622 reefs and other shallow marine habitats (Taylor, 1968; Héros et al., 2007). The 623 presence of sponges in the community is inferred by the occurrence of the gastropod 624 family Triphoridae that are recognized sponge parasites (Marshall, 1983). The 625 absence of encrusting bryozoans in the coral platestone facies, despite the abundant 626 offer of coral substrates for their colonization, can be explained as a preservation 627 issue due to the cementation of sediments on coral surfaces, as it has been suggested 628 by Taylor and Di Martino (in press).

629 Coralline algae assemblages provide the most reliable signal for an interpretation 630 of paleodepth for the coral platestone facies. Mastophoroids are well-known 631 components of the algae communities that live on shallow parts of modern coral reefs, 632 mainly in the first 30 m depth (Adey, 1986; Minnery, 1990; Verheij and Erftemeijer, 633 1993; Iryu et al., 1995). Relatively high abundance of thick crusts of members of the 634 subfamily Mastophoroideae (such as Neogoniolithon and Spongites) has also been 635 well constrained to shallow-water environments in tropical Miocene reefs (Perrin et 636 al., 1995; Braga et al., 2009, 2010). While the paleodepth interpretation of coralline 637 algae with affinity for low light is ambiguous, as they could mean deep/clear or 638 shallow/turbid waters, the photophilic (high-light affinity) property of thick 639 mastophoroid species constitutes an unequivocal indication of a shallow paleodepth 640 for the coral platestone facies. Large discharges of sediments have characterized the 641 Kutai Basin since its early formation (van de Weerd and Armin, 1992; Allen and 642 Chambers, 1998). In the modern Mahakam delta-front system water transparency is 643 very low, with Secchi disc estimation at maximum of 13 m depth (Budhiman et al., 644 2012), due to high quantities of suspended sediments (Storms et al., 2005). Therefore, 645 by analogy to modern conditions around the Mahakam delta, the co-occurrence of

646 mastophoroids and platy coral communities within a terrigenous-rich matrix suggest 647 that coral development took place at a few meters depth, most likely less than 10 m 648 depth and probably even shallower. Intolerable sediment input for most coral species 649 could have promoted a partial interruption of coral development at the end of the 650 coral platestone facies allowing the abrupt dominance of foraminifers at the

651 foraminiferal packstone facies (Fig. 11E).

652 In the foraminiferal packstone facies, the dominance of flatter forms of 653 *Nephrolepidina* combined with the presence of *Cycloclypeus* suggest a decrease of 654 light-levels, indicating the deposition in the darkest and lowest-energy habitat of the 655 studied sections, most likely due to a depth increase (Hallock, 1981; Hallock et al., 656 1986; Renema, 2006). Even though nutrients can also indirectly affect the shape of 657 larger foraminifera by reducing the light reaching the benthic environment (Hallock, 658 1987), in the current study the nutrients effect can be disregarded because the highest 659 CaCO₃ content of the foraminiferal packstone facies suggests the lowest terrigenous 660 input responsible for the transport of nutrients into the marine environment. Corals are 661 the secondary component within this facies, providing additional evidence for a 662 reduction in light-levels. The presence of unidentifiable crustose corallines and 663 fragments of geniculate corallines merely confirm that the foraminiferal packstone 664 facies was deposited in the photic zone but cannot provide a more refined 665 interpretation. 666 Subsequently, the recolonization of thin-platy corals in the coral sheetstone facies 667 could be a response to a stabilized environment by larger benthic foraminifers and a

change of the grain-size composition from silt to clay (Fig. 11F), as it has been found

that thin-platy corals are successful in turbid environments if the input contains finer

670 fractions of sediments (Lokier et al., 2009). Flat forms are more common in the

671 foraminiferal assemblage that is dominated by Lepidosemicyclina bifida and includes 672 abundant Amphistegina and Nephrolepidina. Increased surface area to volume ratios 673 has been proposed as a morphological response of foraminifers to provide more 674 surface for symbionts to capture light in low-light environments (Hallock et al., 675 1986), as was characteristic of the coral sheetstone facies. On the other hand, corals 676 from this facies were mostly thinner than 5 mm suggesting that light availability was 677 much lower under clay-sized than under the silty sediment input in the coral 678 platestone facies, as corals growing at their tolerance limits can develop helical 679 spiraling colony forms to maximize both light capture and ability to shed sediment 680 (Rosen et al., 2002; Sanders and Baron-Szabo, 2005). Ragged margins were observed 681 in some thin-platy colonies (Figs. 6A,K), suggesting that episodic higher discharges 682 of clay sediments produced partial mortality followed by regrowth during moments of 683 less sediment stress (Sanders and Baron-Szabo, 2005). Agariciids are among the most 684 common corals of the coral sheetstone facies and provide more evidence for a turbid 685 habitat. Agariciid corals are the principal inhabitants of many modern mesophotic 686 reefs (Kahng et al., 2010), mainly associated with deep and clear waters in the Indo-687 Pacific (Maragos and Jokiel, 1986), Red Sea (Fricke et al., 1987), and Caribbean 688 (Reed, 1985). In fact, *Leptoseris* species are the deepest known zooxanthellate corals 689 that live today at depths of 150 m (Kahng and Maragos, 2006), suggesting that not 690 only growth forms but also the taxonomic composition of coral communities in low-691 light environments could be analogous between turbid shallow waters, such as the 692 Stadion CC habitats, and clear deep waters as in the modern examples. Although 693 coping with episodic terrestrial input, the coral community did not acquire ecological 694 differentiation at this stage, but remained as thin veneers following the sea-floor 695 morphology, similar to those described as coral carpets (Riegl and Piller, 2000a,b).

696	The rich community of bryozoan epibionts preserved on the underside of agariciids
697	and other taxa, indicates that corals may have grown suprastratally, even though the
698	sheetstone facies was built almost entirely of thin-platy corals. Abundant larger
699	benthic foraminifera and crustose coralline algae were observed partially overgrowing
700	the calicular surfaces of thin-platy corals, suggesting significant partial mortality of
701	the corals before burial. For some taxa, coral growth can be enhanced in turbid
702	habitats (Edinger et al., 2000), and rapid growth would allow colonies to survive high
703	levels of partial mortality, promoting rapid accretion of coral carbonates in turbid
704	environments (Perry et al., 2012). Higher nutrient input associated with episodic
705	terrigenous influx can also be inferred at this stage, based on the proliferation of large
706	encrusting colonies of filter-feeding organisms such as bryozoans (Moissette et al.,
707	2007).
708	The abundance of mastophoroid corallines indicates relatively high light levels in
709	this shallow habitat influenced by siliciclastics. Thus, thin-platy agariciid corals,
710	elongated foraminifera, the occurrence of mastophoroid coralline algae, and a clay-
711	rich matrix all suggest a habitat characterized by episodic high terrigenous input at a
712	paleodepth of about 10 m depth but in relatively calm waters. The absence of fossils
713	and any carbonate contents in the overlying clay-shale facies record the return to
714	fluvial-deltaic environments with higher levels of siliciclastic input, most likely
715	accompanied by drastic decrease of salinity and increase of nutrient input, producing
716	altogether intolerable conditions for coral growth (Fig. 11G).
717	In summary, the laminated siltstone and carbonaceous shale were deposited within
718	the lower delta plain, most likely on the flood plain in peat swamp or mangrove
719	estuarine environments. In contrast, the bioclastic sandstone, coral platestone,
720	for a packstone and coral sheets tone developed on the delta front, probably at 29

depths < 10 m, and fully marine environmental conditions. The clay shales record the
termination of marine-dominated habitats suitable for reef biota.

- 723
- 724

Diversity of Fossil Assemblages

725

726 Species richness varied among the studied fossil assemblages, in which corals were 727 both the main carbonate-forming group and the most diverse taxon. The substrate 728 provided by corals is likely to have enhanced overall diversity in the Stadion settings 729 by hosting bryozoans, mollusks, and coralline algae. The bryozoan community had a 730 medium diversity in comparison to other studied localities of Miocene age in East 731 Kalimantan (Di Martino et al., this issue), yet did not contribute significantly to 732 carbonate accretion. The record of mollusks in the Stadion section is highly biased 733 due to a lack of aragonite preservation as it appears to be typical of reef associated 734 mollusk faunas in the Miocene of East Kalimantan (own observations, 2010-2011) 735 and it has been observed in other modern habitats and several fossil localities (Wright 736 et al., 2003, and references therein); hence this preservational bias impedes the 737 reconstruction of the molluscan faunal diversity or ecology. Larger benthic 738 foraminifera were present in the greater number of fossil facies due to their higher 739 ability to tolerate terrigenous input with respect to corals (Lokier et al., 2009) and 740 because they are efficient colonizers of soft substrates (Hohenegger et al., 1999; 741 Renema, 2008). Richness of larger benthic foraminifera of the Stadion CC is 742 comparable to modern low-light marine environments of Indonesia, but it is lower 743 than in clear waters (Renema and Troelstra, 2001; Renema, 2008). Higher richness in 744 clear waters is probably due to increased habitat partitioning along an extended photic 745 gradient (Hallock, 1987; Renema and Troelstra, 2001; Novak and Renema, this issue). 30 In this study, the analysis of larger benthic foraminifera was used mainly as a paleoenvironmental proxy rather than as a diversity indicator. Even though coralline algae are important paleodepth indicators, in the Stadion patch reef their abundance and diversity was relatively low and restricted to a few mastophoroids species and *Sporolithon* (Rösler et al., this issue). Therefore, discussion about diversity in the Stadion CC sections is focused on the richest taxa found represented by corals and bryozoans.

753 *Corals.*—The 69 coral taxa identified from these sections indicate that high coral 754 richness could develop under turbid conditions in the Stadion CC. Of course corals 755 will be smothered and die at high levels of terrigenous input (Van Woesik et al., 1999; 756 Fabricius, 2005), but these findings clearly show that below this lethal threshold, 757 turbid environments can support rich coral communities over ecologically significant 758 time scales. Likewise, the Stadion coral assemblages were not building large-scale 759 high relief reef structures, supporting the idea that high coral species diversity can be 760 independent of reef development (Johnson et al., 2008). Thus, high siliciclastic input 761 is a major control on the functioning of reef-coral communities even though a high 762 diversity of coral species would be able to thrive under turbid conditions (Klaus et al., 763 2011).

The Stadion coral assemblages are the richest known for a Miocene setting in the Indopacific. Previous records in the area (Wilson, 2005; Lokier et al., 2009) include at least ten coral genera, one quarter the richness discovered in this study. In terms of species richness, the maximum number of species per locality recorded so far is at 34 species in a Middle Miocene site in Fiji (Bromfield and Pandolfi, 2012), and 36 species for a Burdigalian patch reef located about 80 km to the north of the Stadion CC (Novak et al., 2013). Coral assemblages of Late Oligocene age in similar mixed

771	carbonate-siliciclastic settings in Sabah, Malaysian Borneo are also less rich, with a
772	maximum of 37 genera per site (McMonagle et al., 2011, unpublished data).
773	Comparisons of the Stadion patch reef assemblages with modern assemblages may
774	be limited by time-averaging processes in the fossil community (Pandolfi and
775	Greenstein, 1997; Pandolfi, 2002). Even though the high richness of the studied fossil
776	assemblage could be due to a time-averaged effect, it is notable that the Stadion patch
777	reef contains a similar number of species as communities living today in clear waters
778	on the nearshore Great Barrier Reef, estimated to be around 60 species per site (Van
779	Woesik et al., 1999). The Stadion patch reef is almost three times as diverse as coral
780	assemblages currently growing under high river and tidal influence, in which average
781	coral richness per site could vary from 20 to 24 species per site (Van Woesik et al.,
782	1999). In comparison to a larger study performed along the nearshore of the Great
783	Barrier Reef that included 135 reefs with average coral richness of 39.5 taxa per site
784	(DeVantier et al., 2006), the Stadion patch reef contained almost as twice as the
785	number of taxa.
786	There are significant differences in taxonomic composition of coral assemblages
787	between the coral platestone and coral sheetstone facies (Fig. 7A) in terms of the
788	abundances of the dominant Porites species. Studies on Porites species at the Great
789	Barrier Reef have shown that colonies of this genus are able to tolerate long-term
790	input of sediments, low-light levels, in relatively calm waters for large periods of time
791	(Stafford-Smith and Ormond, 1992; Stafford-Smith, 1993; Anthony, 1999; Perry et
792	al., 2009); thus, Porites was able to dominate in the coral sheetstone facies that
793	contained higher levels of terrigenous clay.
794	The coral platestone and sheetstone facies also differed in the presence of
795	acroporids and agariciids, so that acroporids are characteristic of the platestone facies, 32

796 while agariciids are more common and diverse in the sheetstone facies (Table 2). 797 Although acroporids are mainly known to prefer clear and shallow water habitats on 798 modern reefs, some Astreopora and the A. elegans-group (Fig. 6H) species that are 799 typical of the coral platestone facies are also known from low-light environments 800 such as shallow turbid reefs and reef slopes (Wallace, 1999; Veron, 2000). A higher 801 abundance and diversity of agariciids in the coral sheetstone facies, including 802 Pachyseris, Leptoseris and Pavona species, could be explained by their ability to 803 grow and colonize disturbed habitats as observed in modern Indo-Pacific (Tomascik 804 et al., 1997) and Caribbean reefs (Jackson and Hughes, 1985). In the Leitha 805 Limestone (Austria), Middle Miocene coral assemblages dominated by a platy 806 *Leptoseris* species developed as coral carpets with a rich associated bryozoan 807 community that are comparable to the Stadion CC (Reuter et al., 2012). Even though 808 both coral carpet communities have been interpreted to occur under similar high 809 siliciclastic environments, species richness of the Stadion in the Indo-Pacific is much 810 higher than the one of the impoverished carpets of the Leitha Limestone in the 811 Paratethys. 812 Bryozoans.—Twenty-eight bryozoan species occurred within the Stadion coral 813 environments and these new records increase our knowledge of this poorly studied 814 group in fossil communities of the Indo-Pacific (Di Martino and Taylor, 2012). The 815 undersides of platy corals supported a relatively rich encrusting bryozoan community. 816 These surfaces represented potentially long-lived, cryptic habitats for the settlement 817 of bryozoan larvae, offering a large surface area for the growth of encrusting 818 bryozoans and adequate vertical space for erect colony growth. Despite their richness, 819 the abundance of bryozoans is essentially due to a few common encrusting species, 820 particularly Steginoporella sp. and Reptadeonella sp. nov. In the studied units, these

821	two cheilostomes covered more substrate space than any other species. Furthermore,
822	Steginoporella sp. often overgrows older colonies of the same species by frontal
823	budding. Congeneric species encrusting the undersurfaces of foliaceous reef corals in
824	Jamaica at the present-day show a similar tendency to monopolize the substrate
825	(Jackson and Winston, 1982; Jackson, 1984). According to Jackson and Hughes
826	(1985), Jamaican species of Steginoporella are usually extremely mobile, growing
827	laterally at rates up to 11 cm per year. This growth rate is faster than in any other
828	encrusting bryozoan. They form asymmetrical lobes or fans that sweep across the
829	coral undersurface, and colonies survive an average of only about 120 days. In
830	contrast, Jamaican species of Reptadeonella are relatively stationary, growing only 3-
831	4 cm per year. They form fairly symmetrical colonies that are highly persistent,
832	surviving for an average of about 500 days. These differences reflect the distribution
833	of the two species on the undersides of platy corals, with Steginoporella more
834	common than Reptadeonella in more disturbed microhabitats such as the edges of
835	coral colonies. Although in the Stadion material it is impossible to distinguish with
836	certainty between coral edges and inner zones due to the levels of colony
837	fragmentation, the occurrences of Steginoporella sp. and Reptadeonella sp. nov. on
838	different coral colony fragments may reflect the same pattern showed by congeneric
839	Jamaican species (Jackson and Hughes, 1985).
840	
841	Comparison with Coeval Regional Patch Reefs
842	
843	Wilson (2005) described seven other Miocene delta-front patch reefs located in the
844	Kutai Basin. She proposed that all seven patch reefs most likely developed under
845	constant high siliciclastic input in turbid shallow waters with low-light penetration at

846	about or less than 10 m depth during periods of lowstand to transgressive intervals
847	that favored the transient confinement of terrestrial influx. Within this context, the
848	local-scale paleoenvironmental reconstruction and fossil assemblages presented here
849	have similar sequence development to other reefs described in the region, but also add
850	new elements that help to better understand the dynamics of turbid-water coral
851	communities during the Miocene. Here we limit comparisons between the Stadion
852	and the Batu Putih and Dibelakan Parliament patch reefs described by Wilson (2005)
853	and the Bontang patch reef described in Novak et al. (2013). The Batu Putih
854	carbonates occur about 2.3 km below the Stadion CC in the Samarinda sequence, and
855	the Dibelakan Parliament has been considered as a lateral extension of the youngest
856	carbonates of Batu Putih patch reef (Marshall et al., this issue). The Bontang patch
857	reef (Novak et al., 2013) is about 83 km to the north and Late Burdigalian in age.
858	As for most Miocene patch reefs in the region, it is inferred that coral development
859	in the Stadion patch reef occurred during a transgressive interval, based on the
860	transition from carbonaceous shale to coral-rich facies in the lower part of the section
861	that clearly indicates a change from fluvial-deltaic into fully marine environments.
862	Although disseminated carbon and some leaves (2-4%) were also observed at the base
863	of the succession in Batu Putih and Dibelakan Parliament patch reefs (see Fig. 8 and
864	Table 2 in Wilson, 2005), the development of the patch reef on top of a carbonaceous
865	shale makes the Stadion coral assemblages unique from all previously described patch
866	reefs of the region. Coral assemblages occurring immediately after carbonaceous
867	deposition shows that a relatively minor change in depth could trigger coral
868	development in the ancient Kutai Basin.
869	In terms of biota composition, mastophoroid coralline algae are dominant in the
870	Stadion CC in contrast to the dim-light Melobesioidae assemblage observed in patch

871	reefs described by Wilson (2005) and Novak et al. (2013). Coral assemblages follow a
872	relatively similar succession, that in the case of the Batu Putih patch reef has been
873	described as 'ideal' because it shows a change from sheet-platestones to mixstones
874	and pillarstones (Wilson, 2005; Lokier et al., 2009). This succession is, however,
875	partially developed in the Bontang patch reef that has a change of facies from
876	sheetstone into platestone (Novak et al., 2013). In the coral platestone facies of the
877	Stadion patch reef this succession of thin-platy to tabular, small massive and
878	branching coral growth forms occurs as a 'condensed succession' within a very small
879	thickness but without a sharp differentiation into distinct facies.
880	Common coral genera mentioned by Wilson (2005) are also present in the Bontang
881	patch reef (Novak et al., 2013) and the Stadion patch reef, yet direct taxa comparisons
882	can only be performed between the latter two. Although poritids (Porites and
883	Goniopora) are abundant in the four settings, the Bontang patch reef hosts more
884	common merulinid taxa (former Faviidae), while in the Stadion CC, acroporids
885	(Astreopora spp.) and agariciids are more abundant.
886	Thus, a spectrum of three different types of biota assemblages within these turbid
887	environments can be recognized: first, the Stadion patch reef with characteristic
888	photophilic coralline algae and 'condensed succession' of coral development; second,
889	Batu Putih and Dibelakan Parliament patch reefs with coralline algae tolerant of a
890	broader range of turbid low-light habitats and an 'ideal' succession of reef
891	development (Wilson, 2005); and third, the Bontang patch reef (Novak et al., 2013)
892	also with coralline algae that can thrive in turbid low-light but an incomplete
893	succession of corals restricted to sheet and platestones. Such differences in the
894	composition of coralline algae and corals could be interpreted as a response of the
895	biota to slightly different levels of light within the low-light levels range of these
	16
896 shallow turbid habitats, in which the Stadion patch reef developed in the upper limits 897 of such low-light levels, the Batu Putih and Dibelakan Parliament patch reefs 898 (Wilson, 2005) within the whole range of low-light levels allowing more habitat 899 partitioning, and the Bontang patch reef (Novak et al., 2013) developed at the lower 900 boundaries of low-light levels. According to Wilson (2005), turbid conditions on the 901 delta-front would limit coral development to habitats less than 10 m deep, within or 902 above the fair-weather wave base. The lithology and fossil assemblages found in the 903 Stadion patch reef suggest that the Stadion patch reef also occupied this kind of 904 habitat. In the case of the Bontang reef, mesophotic conditions resulted from both 905 high terrigenous input and relatively deeper waters below the fair-weather wave base 906 (Novak et al. 2013).

907 An alternative scenario that could explain the differences found among the three 908 fossil assemblages in question could be associated to the relative position of the patch 909 reefs within the delta system. In deltaic environments, turbidity and light penetration 910 are largely controlled by the relative position of a site within the deltaic complex. In 911 the modern Mahakam delta system, the maximum concentration of suspended 912 particles is found in the mouth of the main delta lobes, while the minimum 913 concentration is observed in the offshore region (Budhiman et al., 2012). Similarly, 914 sands decrease in grain size in an offshore direction (see Fig. 8 in Storms et al., 2005). 915 Superimposed on these onshore-offshore trends there is a north-south variation caused 916 by the southward flow of the Indonesian Throughflow current that generally persists 917 throughout the year (Murray and Arief, 1988) and favors a higher concentration of 918 carbonates on the northern part of the shelf (Roberts and Sydow, 2003). Therefore, 919 the Stadion patch reef might have developed north of an active delta lobe, whilst the 920 Bontang (Novak et al., 2013) and the Batu Putih and Dibelakan Parliament patch reefs

921	(Wilson, 2005), could have been located closer to different active delta lobes.
922	However, this hypothesis cannot be tested here, as larger temporal and spatial scale
923	studies, including detailed multi-taxa and sedimentological analyses are required to
924	untangle the effect of depth and sediment input on the light-levels and how are the
925	biota responses in the past history of coral development of the Kutai basin.
926	
927	Shallow Turbid Reefs and Coral Diversity
928	
929	The reef-coral fauna recovered from the Stadion patch reef is one of the richest
930	Miocene assemblages yet discovered and is a useful record of the transition from
931	foraminifera- to coral-dominated carbonates that occurred during the Early Miocene
932	in this region (Wilson and Rosen, 1998) and it is likely related to the initiation of the
933	modern-day Indo-West Pacific biodiversity hotspot as recorded by diverse coral
934	assemblages from the Late Oligocene in Malaysian Borneo (McMonagle et al., 2011).
935	These Oligocene faunas, and the various patch-reefs that have been described from
936	the Kutai basin all developed in turbid habitats yet contain significant diversity. This
937	suggests that such habitats might have played a role in either increasing
938	diversification during the Miocene or might have acted as refuges allowing taxa to
939	escape extinction during intervals of accelerated regional or global environmental
940	change in the Miocene. The potential role of turbid environments as sites of both
941	accelerated speciation and as potential refugia demands further study, as turbid
942	settings might act in similar ways as clear-water reefs are increasingly damaged by
943	present-day anthropogenic environmental change (Hoegh-Guldberg, 2011; Rogers,
944	2013).

945	In the search for candidate refugia habitats, investigations have been focused on
946	resilient marginal ecosystems, such as deep mesophotic habitats (Kahng et al., 2010;
947	Bongaerts et al., 2010). Recent studies have shown that mesophotic habitats located in
948	clear deep-waters could potentially escape from current impacts (pollution, storms,
949	etc.), yet they only host about 25% of the species that are also present in shallow
950	waters and thus could only provide recolonization for species with broad depth
951	tolerances (Bongaerts et al., 2010). Shallow turbid habitats might be more promising
952	candidates, despite receiving more direct anthropogenic impacts. For example, corals
953	growing in turbid waters in Palau bleached less during the 2010 event than those in
954	clearer, offshore waters, even though they experienced the highest temperatures (Van
955	Woesik et al., 2012). In this context, our findings show that shallow-water turbid
956	habitats hosted a high diversity in the past that could cope with ancient environmental
957	changes. These fossil patch reefs that developed in turbid waters might be providing a
958	glimpse into the future of reef systems as "typical" clear-water reefs continue to
959	decline in most regions.
960	
961	CONCLUSIONS
962	
963	The carbonate bodies of the Stadion CC sections can be interpreted as a shallow-
964	water patch reef, in which the main controls for coral development were depth and
965	varying levels of water turbidity related to the amount, frequency and grain size of
966	siliciclastic input. Evidence gathered in this study support a paleodepth interpretation
967	for the Stadion patch reef within turbid waters at a maximum of 10 m depth. Different
968	facies were most likely deposited following a proposed deepening sequence:

969 laminated siltstone ≤ carbonaceous shales < bioclastic packstones < coral platestone <
970 foraminiferal packstone ≤ coral sheetstone ≤ clay shales.

971 Larger benthic foraminifera were present in all fossiliferous facies supporting their 972 role as the most siliciclastic-tolerant group. Although the environmental conditions 973 for coral development within the Samarinda sequence were ephemeral, the Stadion 974 patch reef had a rich coral assemblage that could cope with changing terrigenous 975 input. Yet their demise was due to increased siliciclastic input exceeding the tolerance 976 of any coral species. Corals enhanced the overall diversity in these turbid settings by 977 hosting bryozoans, coralline algae, mollusks, echinoderms and probably sponges. 978 Comparisons to coeval patch reefs in East Kalimantan show that platy corals are 979 dominant in these environments with some taxa found in most sites but other taxa 980 more unevenly distributed among habitats. Communities of larger benthic 981 for a minifera tend to be similar among all patch reefs, but calcareous coralline algal 982 assemblages vary significantly according to light availability with characteristic 983 assemblages in lower and higher light habitats within the Samarinda turbid settings 984 during the Miocene. Bryozoans are diverse and its presence in the studied fossil 985 record is usually associated with thin platy coral assemblages. Mollusks are poorly 986 preserved in platy-coral dominated settings. Large ecologically-sampled collections 987 and multi-taxa analysis of fossil assemblages are important to the better understanding 988 of paleoenvironmental conditions.

The high diversity of coral species highlights the importance of marginal turbid habitats as a reservoir of diversity during the origins of the Coral Triangle hotspot and might provide useful analogues to understand the future of reef systems as they become restricted to former "marginal" habitats.

993

ACKNOWLEDGMENTS

996	This research is part of the Throughflow Initial Training Network, funded by the
997	Marie Curie Actions Plan, Seventh Framework Programme of the European Union
998	(grant no. 237922). Fieldwork was possible thanks to the collaboration of J. Todd, L.
999	Stevens, J. Young, A. Kusworo, U. Margono, A. S. Erawatna, and safety access to the
1000	road-cut outcrops provided by staff of the KTC Group. B. Rosen is greatly
1001	acknowledged for his help on coral identifications and fruitful discussions regarding
1002	ancient coral environments and interpretations. P. D. Taylor, F. Wesselingh, and A.
1003	Holborn assisted with the taxonomic identification of bryozoans, mollusks, and
1004	foraminifera, respectively. A. F. Budd and C. Wallace are thanked for their advice on
1005	coral identifications of Merulinidae and Acropora, respectively. J. Darrell and L.
1006	Douglas assisted with the curation of specimens at the NHM, and we gratefully
1007	acknowledge the enthusiastic support of A. Thomas and the NHM "V-Factor"
1008	volunteers for exhaustive sample processing. This study was conducted under
1009	research license 0266/SIP/FRP/XI/2010 issued by RISTEK (Kementerian Riset Dan
1010	Teknologi Republik Indonesia) with special thanks 'terima kasih' to Professor F.
1011	Hasibuan of the Indonesian Geological Agency - Center for Geology Survey, for his
1012	support to this work. C. Perrin and one anonymous reviewer are acknowledged for
1013	their constructive suggestions that helped in improving this manuscript.
1014	

REFERENCES

101	15
-----	----

- 1016 ADEY, W.H., 1986, Coralline algae as indicators of sea-level, *in* Plassche, O. van de,
- 1017 ed., Sea-Level Research: a Manual for the Collection and Evaluation of Data:
- 1018 Free University of Amsterdam, Amsterdam, p. 229–279.
- 1019 ALLEN, G.P., and CHAMBERS, J.L.C., 1998, Sedimentation in the Modern and
- 1020 Miocene Mahakam Delta: Indonesian Petroleum Association, Jakarta, Indonesia.
- 1021 ANTHONY, K.R.N., 1999, Coral suspension feeding on fine particulate matter: Journal
- 1022 of Experimental Marine Biology and Ecology, v. 232, p. 85–106, doi:
- 1023 10.1016/S0022-0981(98)00099-9.
- 1024 BASSI, D., and NEBELSICK, J.H., 2010, Components, facies and ramps: Redefining
- 1025 Upper Oligocene shallow water carbonates using coralline red algae and larger
- 1026 for aminifera (Venetian area, northeast Italy): Palaeogeography,
- 1027 Palaeoclimatology, Palaeoecology, v. 295, p. 258–280, doi:
- 1028 10.1016/j.palaeo.2010.06.003.
- 1029 BAYER, F.M., and MACINTYRE, I.G., 2001, The mineral component of the axis and
- 1030 holdfast of some gorgonacean octocorals (Coelenterata: Anthozoa), with special
- 1031 reference to the family Gorgoniidae: Proceedings of the Biological Society of
- 1032 Washington, v. 114, p. 309–345.
- 1033 BEESLEY, P.L., ROSS, G.J.B., and WELLS, A.E., 1998, Mollusca: The southern
- 1034 synthesis. Fauna of Australia. Part A. XVI: CSIRO Publishing, Melbourne,1035 Australia.

- 1036 BELLWOOD, D.R., HUGHES, T.P., CONNOLLY, S.R., and TANNER, J., 2005,
- 1037 Environmental and geometric constraints on Indo-Pacific coral reef biodiversity:
- 1038 Ecology Letters, v. 8, p. 643–651, doi: 10.1111/j.1461-0248.2005.00763.x.
- 1039 BELLWOOD, D.R., HUGHES, T.P., FOLKE, C., and NYSTRÖM, M., 2004, Confronting
- 1040 the coral reef crisis: Nature, v. 429, p. 827–833.
- 1041 BENISEK, M.-F., BETZLER, C., MARCANO, G., and MUTTI, M., 2009, Coralline-algal
- assemblages of a Burdigalian platform slope: implications for carbonate platform
- 1043 reconstruction (northern Sardinia, western Mediterranean Sea): Facies, v. 55, p.
- 1044 375–386, doi: 10.1007/s10347-009-0183-7.
- 1045 BONGAERTS, P., RIDGWAY, T., SAMPAYO, E.M., and HOEGH-GULDBERG, O., 2010,
- Assessing the "deep reef refugia" hypothesis: Focus on Caribbean reefs: Coral
 Reefs, v. 29, p. 309–327, doi: 10.1007/s00338-009-0581-x.
- 1048 BOSENCE, D.W.J., 1983, Coralline algal reef frameworks: Journal of the Geological
- 1049 Society, v. 140, p. 365–376, doi: 10.1144/gsjgs.140.3.0365.
- 1050 BOSENCE, D.W.J., 1991, Coralline algae: mineralization, taxonomy, and
- 1051 palaeoecology, *in* Calcareous Algae and Stromatolites: Springer, p. 98–113.
- 1052 BRAGA, J.C., BASSI, D., and PILLER, W.E., 2010, Palaeoenvironmental significance of
- 1053 Oligocene-Miocene coralline red algae a review, in Mutti, M., Piller, W.E., and
- 1054 Betzler, C., eds., Carbonate Systems During the Oligocene-Miocene Climatic
- 1055 Transition: IAS Special Publications 42, p. 165–182.

1056	BRAGA, J.C., MARTIN, J.M., and ALCALA, B., 1990, Coral reefs in coarse-terrigenous
1057	sedimentary environments (Upper Tortonian, Granada Basin, southern Spain):
1058	Sedimentary Geology, v. 66, p. 135–150, doi: 10.1016/0037-0738(90)90011-H.
1059	BRAGA, J.C., VESCOGNI, A., BOSELLINI, F.R., and AGUIRRE, J., 2009, Coralline algae
1060	(Corallinales, Rhodophyta) in western and central Mediterranean Messinian
1061	reefs: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 275, p. 113-128,
1062	doi: 10.1016/j.palaeo.2009.02.022.
1063	BROMFIELD, K., and PANDOLFI, J.M., 2012, Regional patterns of evolutionary
1064	turnover in Neogene coral reefs from the central Indo-West Pacific Ocean:
1065	Evolutionary Ecology, v. 26, p. 375–391, doi: 10.1007/s10682-011-9483-9.
1066	BROWNE, N.K., SMITHERS, S.G., and PERRY, C.T., 2012, Coral reefs of the turbid
1067	inner-shelf of the Great Barrier Reef, Australia: An environmental and
1068	geomorphic perspective on their occurrence, composition and growth: Earth-
1069	Science Reviews, v. 115, p. 1–20, doi: 10.1016/j.earscirev.2012.06.006.
1070	BUDHIMAN, S., SALAMA, M.S., VEKERDY, Z., and VERHOEF, W., 2012, Deriving
1071	optical properties of Mahakam Delta coastal waters, Indonesia using in situ
1072	measurements and ocean color model inversion: ISPRS Journal of
1073	Photogrammetry and Remote Sensing, v. 68, p. 157-169, doi:
1074	10.1016/j.isprsjprs.2012.01.008.
1075	CIBAJ, I., 2009, A fluvial series in the Middle Miocene of Kutei Basin: A major shift
1076	from Proto-Mahakam shallow marine to the continental environment, in AAPG
1077	HEDBERG CONFERENCE "Variations in Fluvial-Deltaic and Coastal

- 1078 Reservoirs Deposited in Tropical Environments". AAPG Search and Discover
 1079 Article #90102: Jakarta, Indonesia, p. 1–11.
- 1080 CLOKE, I.R., MOSS, S.J., and CRAIG, J., 1999, Structural controls on the evolution of
 1081 the Kutai Basin, East Kalimantan: Journal of Asian Earth Sciences, v. 17, p.
 1082 137–156.
- 1083 CONSTANTZ, B.R., 1986, The primary surface area of corals and variations in their
 1084 susceptibility to diagenesis, *in* Schroeder, J.H. and Purser, B.H., eds., Reef
 1085 Diagenesis: Springer, New York, p. 53–76.
- 1086 CUMMINGS, E.R., 1932, Reefs or bioherms?: Geological Society Of America Bulletin,
 1087 v. 43, p. 331–352.
- 1088 DE'ATH, G., and FABRICIUS, K.E., 2010, Water quality as a regional driver of coral
- 1089 biodiversity and macroalgae on the Great Barrier Reef Water as a driver of coral
- 1090 quality biodiversity regional on the Great Barrier Reef and: Ecological
- 1091 Applications, v. 20, p. 840–850.
- 1092 DEVANTIER, L.M., DE'ATH, G., TURAK, E., DONE, T.J., and FABRICIUS, K.E., 2006,
- 1093 Species richness and community structure of reef-building corals on the
- 1094 nearshore Great Barrier Reef: Coral Reefs, v. 25, p. 329–340, doi:
- 1095 10.1007/s00338-006-0115-8.
- 1096 DI MARTINO, E., and TAYLOR, P.D., 2012, Miocene Bryozoa from East Kalimantan,
- 1097 Indonesia. Part I: Cyclostomata and Cheilostomata "Anasca:" Scripta Geologica.

1098	DI MARTINO, E., TAYLOR, P.D., and JOHNSON, K.G. Bryozoan diversity in the
1099	Miocene of the Kutai Basin, East Kalimantan, Indonesia: Palaios.
1100	DUNHAM, R.J., 1962, Classification of carbonate rocks according to depositional
1101	texture, in Ham, W.E., ed., Classification of Carbonate Rocks. American
1102	Association of Petroleum Geologists Memoir: p. 108-121.
1103	EDINGER, E.N., LIMMON, G. V, JOMPA, J., WIDJATMOKO, W., HEIKOOP, J.M., and
1104	RISK, M.J., 2000, Normal coral growth rates on dying reefs: Are coral growth
1105	rates good indicators of reef health?: Marine Pollution Bulletin, v. 40, p. 404-
1106	425, doi: 10.1016/S0025-326X(99)00237-4.
1107	FABRICIUS, K.E., 2005, Effects of terrestrial runoff on the ecology of corals and coral
1108	reefs: review and synthesis: Marine Pollution Bulletin, v. 50, p. 125–146, doi:
1109	10.1016/j.marpolbul.2004.11.028.
1110	FABRICIUS, K.E., and DE'ATH, G., 2001, Environmental factors associated with the

spatial distribution of crustose coralline algae on the Great Barrier Reef: Coral

1112 Reefs, v. 19, p. 303–309, doi: 10.1007/s003380000120.

- 1113 FAGERSTROM, J.A., 1987, The evolution of reef communities: John Wiley & Sons,1114 New York.
- 1115 FOLK, R.L., 1980, Petrology of sedimentary rocks: Hemphill Publishing Company,
- 1116 Austin, Texas.

- 1117 FRICKE, H.W., VARESCHI, E., and SCHLICHTER, D., 1987, Photoecology of the coral
- 1118 Leptoseris fragilis in the Red Sea twilight zone (an experimental study by1119 submersible): Oecologia, v. 73, p. 371–381.
- 1120 GAINEY, L.F., and WISE, S.W., 1980, Convergent shell morphology in intertidal
- gastropods: Journal of Molluscan Studies, v. 46, p. 192–207.
- 1122 GASTALDO, R.A., 2010, Peat or no peat: Why do the Rajang and Mahakam Deltas
- differ?: International Journal of Coal Geology, v. 83, p. 162–172, doi:
- 1124 10.1016/j.coal.2010.01.005.
- 1125 GERTH, H., 1923, Die Anthozoenfauna des Jungtertiärs von Borneo [Anthozoa from
- 1126 the Upper Tertiary of Borneo]: Sammlungen des Geologischen Reichs-Museums
- 1127 in Leiden, Serie 1, v. 10, p. 37–136, 9 plates.
- 1128 HALL, R., and NICHOLS, G., 2002, Cenozoic sedimentation and tectonics in Borneo:
- 1129 climatic influences on orogenesis, *in* Jones, S.J. and Frostick, L., eds., Sediment
- 1130 Flux to Basins: Causes, Controls and Consequences: Geological Society,
- 1131 London, Special Publications, London, p. 5–22.
- 1132 HALLOCK, P., 1981, Production of carbonate sediments by selected Large Benthic
- 1133 Foraminifera on two Pacific coral reefs: Journal of Sedimentary Petrology, v. 51,
- 1134 p. 467–474.
- HALLOCK, P., 1987, Fluctuations in the trophic resource continuum: A factor in global
 diversity cycles?: Paleoceanography, v. 2, p. 457–471.

- 1137 HALLOCK, P., FORWARD, L.B., and HANSEN, H.J., 1986, Influence of environment on
- the test shape of Amphistegina: The Journal of Foraminiferal Research, v. 16, p.
 224–231, doi: 10.2113/gsjfr.16.3.224.
- 1140 HALLOCK, P., and GLENN, E.C., 1986, Larger Benthic Foraminifera: A tool for
- 1141 paleoenvironmental analysis of Cenozoic carbonate depositional facies: Palaios,
- 1142 v. 1, p. 55–64.
- 1143 HAYWARD, A.B., 1982, Coral reefs in a clastic sedimentary environment: Fossil
- 1144 (Miocene, S.W. Turkey) and modern (Recent, Red Sea) analogues: Coral Reefs,
- 1145 v. 1, p. 109–114, doi: 10.1007/BF00301692.
- 1146 HÉROS, V., LOZOUET, P., MAESTRATI, P., COSEL, R. Von, BRABANT, D., and
- 1147 BOUCHET, P., 2007, Mollusca of New Caledonia, in Payri, C. and Forges, R. de,
- eds., Compendium of Marine Species of New Caledonia, Doc. Sci. Tech. II7:
- 1149 Insitut de recherche pour le développement, Centre de Nouméa, p. 199–254.
- 1150 HOEGH-GULDBERG, O., 2011, Coral reef ecosystems and anthropogenic climate
- 1151 change: Regional Environmental Change, v. 11, p. S215–S227, doi:
- 1152 10.1007/s10113-010-0189-2.
- 1153 HOEGH-GULDBERG, O., MUMBY, P.J., HOOTEN, A.J., STENECK, R.S., GREENFIELD, P.,
- 1154 GOMEZ, E., HARVELL, C.D., SALE, P.F., EDWARDS, a J., CALDEIRA, K.,
- 1155 KNOWLTON, N., EAKIN, C.M., IGLESIAS-PRIETO, R., MUTHIGA, N., et al., 2007,
- 1156 Coral reefs under rapid climate change and ocean acidification: Science (New
- 1157 York, N.Y.), v. 318, p. 1737–42, doi: 10.1126/science.1152509.

1158	HOEKSEMA, B.W., 2007, Delineation of the Indo-Malayan Centre of Maximum
1159	Marine Biodiversity: The Coral Triangle, in Renema, W., ed., Biogeography,
1160	Time, and Place: Distributions, Barriers, and Islands: Springer, p. 117–178.
1161	HOHENEGGER, J., YORDANOVA, E., NAKANO, Y., and TATZREITER, F., 1999, Habitats
1162	of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan:
1163	Marine Micropaleontology, v. 36, p. 109–168.

- 1164 HOTTINGER, L., 1997, Shallow benthic foraminiferal assemblages as signals for depth
- of their deposition and their limitations: Bulletin de la Société Géologique de
 France, v. 168, p. 491–505.
- 1167 HUGHES, T.P., BAIRD, A.H., BELLWOOD, D.R., CARD, M., CONNOLLY, S.R., FOLKE,
- 1168 C., GROSBERG, R., HOEGH-GULDBERG, O., JACKSON, J.B.C., KLEYPAS, J.A.,
- 1169 LOUGH, J.M., MARSHALL, P., NYSTRÖM, M., PALUMBI, S.R., et al., 2003,
- 1170 Climate change, human impacts, and the resilience of coral reefs: Science (New

1171 York, N.Y.), v. 301, p. 929–933, doi: 10.1126/science.1085046.

- 1172 HUGHES, T.P., RODRIGUES, M.J., BELLWOOD, D.R., CECCARELLI, D., HOEGH-
- 1173 GULDBERG, O., MCCOOK, L.J., MOLTSCHANIWSKYJ, N., PRATCHETT, M.S.,
- 1174 STENECK, R.S., and WILLIS, B., 2007, Phase shifts, herbivory, and the resilience
- 1175 of coral reefs to climate change: Current biology: CB, v. 17, p. 360–5, doi:
- 1176 10.1016/j.cub.2006.12.049.

. . . .

- 1177 INSALACO, E., 1998, The descriptive nomenclature and classification of growth
- fabrics in fossil scleractinian reefs: Sedimentary Geology, v. 118, p. 159–186.

1179	IRYU, Y., NAKIMORI, T., MATSUDA, S., and ABE, O., 1995, Distribution of marine
1180	organisms and its geological significance in the modern reef complex of the
1181	Ryukyu Islands: Sedimentary Geology, v. 99, p. 243-258.
1182	JACKSON, J.B.C., 1984, Ecology of cryptic coral reef communities. III. Abundance
1183	and aggregation of encrusting organisms with particular reference to
1184	Cheilostome Bryozoa: Journal of Experimental Marine Biology and Ecology, v.
1185	75, p. 37–57.
1186	JACKSON, J.B.C., and HUGHES, T.P., 1985, Adaptive strategies of coral-reef
1187	invertebrates: American Scientist,, v. 73, p. 265–274.
1188	JACKSON, J.B.C., and WINSTON, J.E., 1982, Ecology of cryptic coral reef
1189	communities. I. Distribution and abundance of major groups of encrusting
1190	organisms: Journal of Experimental Marine Biology and Ecology, v. 57, p. 135-
1191	147.
1192	JOHNSON, K.G., JACKSON, J.B.C., and BUDD, A.F., 2008, Caribbean reef development
1193	was independent of coral diversity over 28 million years: Science, v. 319, p.
1194	1521-1523, doi: 10.1126/science.1152197.

- 1195 JOHNSON, K.G., SÁNCHEZ-VILLAGRA, M.R., and AGUILERA, O.A., 2009, The
- 1196 Oligocene-Miocene transition on coral reefs in the Falcon Basin (NW

1197 Venezuela): Palaios, v. 24, p. 59–69, doi: 10.2110/palo.2008.p08-004r.

JOHNSON, K.G., SANTODOMINGO, N., RENEMA, W., and ROSEN, B.R. Old data for old
questions: Historical collections and the neogene origins of SE Asian reef-coral
diversity: Palaios.

1201	KAHNG, S.E., and MARAGOS, J.E., 2006, The deepest, zooxanthellate scleractinian
1202	corals in the world?: Coral Reefs, v. 25, p. 254–254, doi: 10.1007/s00338-006-
1203	0098-5.

1204	KAHNG, S.E., SPALDING, H.L., BROKOVICH, E., WAGNER, D., WEIL, E., HINDERSTEIN
1205	L., and TOONEN, R.J., 2010, Community ecology of mesophotic coral reef
1206	ecosystems: Coral Reefs, v. 29, p. 255–275, doi: 10.1007/s00338-010-0593-6.
1207	KATWIJK, M.M. Van, MEIER, N.F., LOON, R. Van, HOVE, E.M. Van, GIESEN,

1208 W.B.J.T., VELDE, G. Van Der, and HARTOG, C. Den, 1993, Sabaki River

sediment load and coral stress: correlation between sediments and condition of

1210 the Malindi-Watamu reefs in Kenya (Indian Ocean): Marine Biology, v. 117, p.

1211 675–683.

1212 KENNEDY, W.J., TAYLOR, J.D., and HALL, A., 1969, Environmental and biological

1213 control on bivalve shell mineralogy: Biological Reviews, v. 44, p. 499–530.

1214 KLAUS, J.S., MCNEILL, D.F., BUDD, A.F., and COATES, A.G., 2011, Neogene reef

1215 coral assemblages of the Bocas del Toro region, Panama: The rise of Acropora

1216 palmata: Coral Reefs, v. 31, p. 191–203, doi: 10.1007/s00338-011-0835-2.

1217 KLAUS, J.S., MCNEILL, D.F., BUDD, A.F., and JOHNSON, K.G., 2008, Assessing

1218 community change in Miocene to to Pliocene coral assemblages of the Northern

- 1219 Dominican Republic, *in* Nehm, R.H. and Budd, A.F., eds., Evolutionary Stasis
- and Change in the Dominician Republic Neogene: Springer Science + Business
- 1221 Media B.V., p. 193–223.

1222	KLEYPAS, J.A., MCMANUS, J.W., and MEÑEZ, L.A.B., 1999, Environmental limits to
1223	coral reef development: Where do we draw the line?: American Zoologist, v. 39
1224	p. 146–159.

- 1225 LARCOMBE, P., COSTEN, A., and WOOLFE, K.J., 2001, The hydrodynamic and
- sedimentary setting of nearshore coral reefs, central Great Barrier Reef shelf,
- 1227 Australia: Paluma Shoals, a case study: Sedimentology, v. 48, p. 811–835.
- 1228 LOKIER, S.W., WILSON, M.E.J., and BURTON, L.M., 2009, Marine biota response to
- 1229 clastic sediment influx: A quantitative approach: Palaeogeography,
- 1230 Palaeoclimatology, Palaeoecology, v. 281, p. 25–42, doi:
- 1231 10.1016/j.palaeo.2009.07.007.
- 1232 LOWENSTAM, H.A., and WEINER, S., 1983, Mineralization by organisms and the
- 1233 evolution of biomineralization, *in* Westbroek, P. and DeJong, E.W., eds.,
- Biomineralization and Biological Metal Accumulation: Reidel Pub. Co.,
- 1235 Dordrecht, p. 191–203.
- 1236 MARAGOS, J.E., and JOKIEL, P.L., 1986, Reef corals of Johnston Atoll: One of the
- 1237 world's most isolated reefs: Coral Reefs, v. 4, p. 141–150.
- 1238 MARSHALL, B.A., 1983, A revision of the Recent Triphoridae of southern Australia:
- 1239 Records of the Australian Museum, v. Supplement, p. 119.
- 1240 MARSHALL, N., NOVAK, V., CIBAJ, I., KRIJGSMAN, W., RENEMA, W., YOUNG, J.,
- 1241 FRASER, N., LIMBONG, A., and MORLEY, R. Dating Borneo's Deltaic Deluge:
- 1242 Middle Miocene progradation of the Mahakam Delta: Palaios.

1243	MCGREGOR, H. V, and GAGAN, M., 2003, Diagenesis and geochemistry of Porites
1244	corals from Papua New Guinea: implications for Paleoclimate reconstruction
1245	Diagenesis and geochemistry of Porites corals from Papua New Guinea:
1246	Geochimica et Cosmochimica Acta, v. 67, p. 2147–2156.
1247	MCMONAGLE, L.B., LUNT, P., WILSON, M.E.J., JOHNSON, K.G., MANNING, C., and
1248	YOUNG, J., 2011, A re-assessment of age dating of fossiliferous limestones in
1249	eastern Sabah, Borneo: Implications for understanding the origins of the Indo-
1250	Pacific marine biodiversity hotspot: Palaeogeography, Palaeoclimatology,
1251	Palaeoecology, v. 305, p. 28-42, doi: 10.1016/j.palaeo.2011.02.009.
1252	MCNEILL, D.F., COATES, A.G., BUDD, A.F., and BORNE, P.F., 2000, Integrated
1253	paleontologic and paleomagnetic stratigraphy of the upper Neogene deposits
1254	around Limon, Costa Rica: A coastal emergence record of the Central American
1255	Isthmus: Geological Society Of America Bulletin, v. 112, p. 963-981, doi:
1256	10.1130/0016-7606(2000)112<963.
1257	MINNERY, G.A., 1990, Crustose coralline algae from the Flower Garden Banks,
1258	northwestern Gulf of Mexico: Controls on distribution and growth morphology:
1259	Journal of Sedimentary Petrology, v. 60, p. 992–1007.
1260	MOISSETTE, P., DULAI, A., ESCARGUEL, G., KÁZMÉR, M., MÜLLER, P., and SAINT
1261	MARTIN, JP., 2007, Mosaic of environments recorded by bryozoan faunas from
1262	the Middle Miocene of Hungary: Palaeogeography, Palaeoclimatology,
1263	Palaeoecology, v. 252, p. 530–556, doi: 10.1016/j.palaeo.2007.05.010.

1264	MORSILLI, M., BOSELLINI, F.R., POMAR, L., HALLOCK, P., AURELL, M., and
1265	PAPAZZONI, C.A., 2011, Mesophotic coral buildups in a prodelta setting (Late
1266	Eocene, southern Pyrenees, Spain): A mixed carbonate-siliciclastic system:
1267	Sedimentology, v. 59, p. 766–794, doi: 10.1111/j.1365-3091.2011.01275.x.
1268	MOSS, S.J., and CHAMBERS, J.L.C., 1999, Tertiary facies architecture in the Kutai
1269	Basin, Kalimantan, Indonesia: Journal of Asian Earth Sciences, v. 17, p. 157-
1270	181.
1271	MURRAY, S.P., and ARIEF, D., 1988, Throughflow into the Indian Ocean through the
1272	Lombok Strait, January 1985–January 1986: Nature, v. 333, p. 444–447, doi:
1273	doi:10.1038/333444a0.
1274	NOVAK, V., and RENEMA, W. Larger foraminifera as environmental discriminators in
1275	Miocene mixed carbonate-siliciclastic systems: Palaios.
1276	NOVAK, V., SANTODOMINGO, N., RÖSLER, A., DI MARTINO, E., BRAGA, J.C.,
1277	TAYLOR, P.D., JOHNSON, K., and RENEMA, W., 2013, Environmental
1278	reconstruction of a late Burdigalian (Miocene) patch reef in deltaic deposits (East
1279	Kalimantan, Indonesia): Palaeogeography, Palaeoclimatology, Palaeoecology,
1280	doi: 10.1016/j.palaeo.2013.01.009.
1281	NUGUES, M.M., and ROBERTS, C.M., 2003, Coral mortality and interaction with algae
1282	in relation to sedimentation: Coral Reefs, v. 22, p. 507-516, doi:
1283	10.1007/s00338-003-0338-x.
1284	OKSANEN, J., BLANCHET, F.G., KINDT, R., LEGENDRE, P., MINCHIN, P.R., O'HARA,
1285	R.B., SIMPSON, G.L., SOLYMOS, P., HENRY, M., STEVENS, H., and WAGNER, H.,

- 1286 2013, Vegan: Community ecology package. Ordination methods, diversity
- 1287 analysis and other functions for community and vegetation ecologists:
- 1288 http://vegan.r-forge.r-project.org/.
- 1289 PANDOLFI, J.M., 2002, Coral community dynamics at multiple scales: Coral Reefs, v.
- 1290 21, p. 13–23, doi: 10.1007/s00338-001-0204-7.
- 1291 PANDOLFI, J.M., 1996, Limited membership in Pleistocene reef coral assemblages
- from the Huon Peninsula, Papua New Guinea: Constancy during global change:
 Paleobiology, v. 22, p. 152–176.
- 1294 PANDOLFI, J.M., and GREENSTEIN, B.J., 1997, Taphonomic alteration of reef corals:
- 1295 Effects of reef environment and coral growth form. I. The Great Barrier Reef:1296 Palaios, v. 12, p. 27–42.
- 1297 PERRIN, C., 2000, Changes of palaeozonation patterns within Miocene coral reefs,
- 1298 Gebel Abu Shaar, Gulf of Suez, Egypt: Lethaia, v. 33, p. 253–268, doi:
- 1299 10.1080/002411600750053826.
- 1300 PERRIN, C., BOSENCE, D.W.J., and ROSEN, B.R., 1995, Quantitative approaches to
- palaeozonation and palaeobathymetry of corals and coralline algae in Cenozoic
- reefs: Geological Society Special Publication, p. 181–229, doi:
- 1303 10.1144/GSL.SP.1995.083.01.10.
- 1304 PERRY, C.T., SMITHERS, S.G., GULLIVER, P., and BROWNE, N.K., 2012, Evidence of
- 1305 very rapid reef accretion and reef growth under high turbidity and terrigenous
- 1306 sedimentation: Geology, v. 40, p. 719–722, doi: 10.1130/G33261.1.

1307	PERRY, C.T., SMITHERS, S.G., and JOHNSON, K.G., 2009, Long-term coral community
1308	records from Lugger Shoal on the terrigenous inner-shelf of the central Great
1309	Barrier Reef, Australia: Coral Reefs, v. 28, p. 941–948, doi: 10.1007/s00338-
1310	009-0528-2.
1311	PLAZIAT, JC., 1995, Modern and fossil mangroves and mangals: their climatic and
1312	biogeographic variability: Geological Society, London, Special Publications, v.

- 1313 83, p. 73–96, doi: 10.1144/GSL.SP.1995.083.01.05.
- 1314 POMAR, L., BASSANT, P., BRANDANO, M., RUCHONNET, C., and JANSON, X., 2012,
- 1315 Impact of carbonate producing biota on platform architecture: Insights from
- 1316 Miocene examples of the Mediterranean region: Earth-Science Reviews, v. 113,
- 1317 p. 186–211, doi: 10.1016/j.earscirev.2012.03.007.
- 1318 PRAGER, E.J., and GINSBURG, R.N., 1989, Carbonate nodule growth on Florida's
- outer shelf and its implications for fossil interpretations: Palaios, v. 4, p. 310–
 317.
- R-CORE TEAM, 2013, R: A language and environment for statistical computing:
 http://www.r-project.org.
- 1323 REED, J.K., 1985, Deepest distribution of Atlantic hermatypic corals discovered in the
- Bahamas: Proceedings of the Fifth International Coral Reef Symposium, v. 6, p.249–254.
- RENEMA, W., 2006, Large benthic foraminifera from the deep photic zone of a mixed
 siliciclastic-carbonate shelf off East Kalimantan, Indonesia: Marine
- 1328 Micropaleontology, v. 58, p. 73–82, doi: 10.1016/j.marmicro.2005.10.004.

1329	RENEMA, W., 2008, Habitat selective factors influencing the distribution of larger
1330	benthic foraminiferal assemblages over the Kepulauan Seribu: Marine
1331	Micropaleontology, v. 68, p. 286–298, doi: 10.1016/j.marmicro.2008.06.002.
1332	RENEMA, W., and TROELSTRA, S.R., 2001, Larger foraminifera distribution on a
1333	mesotrophic carbonate shelf in SW Sulawesi (Indonesia): Palaeogeography,
1334	Palaeoclimatology, Palaeoecology, v. 175, p. 125-146, doi: 10.1016/S0031-
1335	0182(01)00389-3.
1336	REUTER, M., BRACHERT, T.C., and KROEGER, K.F., 2005, Diagenesis of growth bands
1337	in fossil scleractinian corals: identification and modes of preservation: Facies, v.
1338	51, p. 146–159, doi: 10.1007/s10347-005-0064-7.
1339	REUTER, M., PILLER, W.E., and ERHART, C., 2012, A Middle Miocene carbonate

1340 platform under silici-volcaniclastic sedimentation stress (Leitha Limestone,

1341 Styrian Basin, Austria) — Depositional environments, sedimentary evolution

and palaeoecology: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 350-

1343 352, p. 198–211, doi: 10.1016/j.palaeo.2012.06.032.

1344 RIEGL, B., and PILLER, W.E., 2000a, Biostromal Coral Facies-A Miocene Example

1345 from the Leitha Limestone (Austria) and its Actualistic Interpretation: Palaios, v.

- 1346 15, p. 399–413, doi: 10.1669/0883-1351(2000)015
- 1347 RIEGL, B.M., and PILLER, W.E., 2000b, Reefs and coral carpets in the northern Red
- 1348 Sea as models for organism-environment feedback in coral communities and its
- reflection in growth fabrics: Geological Society, London, Special Publications, v.
- 1350 178, p. 71–88, doi: 10.1144/GSL.SP.2000.178.01.06.

1351	RIEGL, B.M., and PILLER, W.E., 2002, Reefs and coral carpets in the Miocene
1352	paratethys (Badenian, Leitha Limestone, Austria): Proceedings 9th International
1353	Coral Reef Symposium, Bali, Indonesia, v. 1, p. 211–216.
1354	ROBERTS, H.H., and SYDOW, J., 2003, Late Quaternary stratigraphy and
1355	sedimentology of the offshore Mahakam Delta, East Kalimantan (Indonesia):
1356	SEPM Special Publication, Tropical Deltas of Southeast Asia- Sedimentation,
1357	stratigraphy and petroleum geology, v. 76, p. 125-145.
1358	Roff, G., Clark, T.R., Reymond, C.E., Zhao, J., Feng, Y., McCook, L.J., Done,
1359	T.J., and PANDOLFI, J.M., 2013, Palaeoecological evidence of a historical
1360	collapse of corals at Pelorus Island, inshore Great Barrier Reef, following
1361	European settlement .: Proceedings. Biological sciences / The Royal Society, v.
1362	280, p. 1-10, doi: 10.1098/rspb.2012.2100.
1363	ROGERS, C.S., 1990, Responses of coral reefs and reef organisms to sedimentation:
1364	Marine Ecology Progress Series, v. 62, p. 185–202.
1365	ROGERS C.S. 2013 Coral reef resilience through biodiversity. ISRN Oceanography
1366	v. 2013. p. 1–18. doi: 10.5402/2013/739034.
	······································

- 1367 ROSEN, B.R., 1990, Reefs and carbonate build-ups, in Briggs, D.E.G. and Crowther,
- 1368 P.R., eds., Palaeobiology: A Synthesis: Blackwell Scientific Publications,
- 1369 Oxford, p. 341–346.
- 1370 ROSEN, B.R., AILLUD, G.S., BOSELLINI, F.R., CLACK, N.J., and INSALACO, E., 2002,
- 1371 Platy coral assemblages: 200 million years of functional stability in response to

- the limiting effects of light and turbidity: Proceedings 9th International CoralReef Symposium, Bali, Indonesia, p. 255–264.
- 1374 RÖSLER, A., PRETKOVIĆ, V., and BRAGA, J.C. Coralline algae from the Miocene
- 1375 Mahakam Delta (East Kalimantan, SE Asia): Palaios.
- 1376 SANDERS, D., and BARON-SZABO, R.C., 2005, Scleractinian assemblages under
- 1377 sediment input: their characteristics and relation to the nutrient input concept:
- 1378 Palaeogeography, Palaeoclimatology, Palaeoecology, v. 216, p. 139–181, doi:
- 1379 10.1016/j.palaeo.2004.10.008.
- 1380 STAFFORD-SMITH, M.G., 1993, Sediment-rejection efficiency of 22 species of
- 1381 Australian scleractinian corals: Marine Biology, v. 115, p. 229–243.
- 1382 STAFFORD-SMITH, M.G., and ORMOND, R.F.G., 1992, Sediment-rejection
- 1383 Mechanisms of 42 Species of Australian Scleractinian Corals: Australian Journal
- 1384 of Marine and Freshwater Research, v. 43, p. 683–705.
- 1385 STORMS, J.E. a., HOOGENDOORN, R.M., DAM, R.A.C., HOITINK, A.J.F., and
- 1386 KROONENBERG, S.B., 2005, Late-Holocene evolution of the Mahakam delta, East
- 1387 Kalimantan, Indonesia: Sedimentary Geology, v. 180, p. 149–166, doi:
- 1388 10.1016/j.sedgeo.2005.08.003.
- 1389 SU, X., KAMAT, S., and HEUER, A.H., 2000, The structure of sea urchin spines, large
- biogenic single crystals of calcite: Journal of Materials Science, v. 35, p. 5545–
- 1391 5551.

1392	TAYLOR, J.D., 1968, Coral reef and associated invertebrate communities (mainly
1393	molluscan) around Mahé, Seychelles: Philosophical Transactions of the Royal
1394	Society of London Series B-Biological Sciences, v. 254, p. 129–206.
1395	TAYLOR, J.D., 1977, Food and habitats of predatory gastropods on coral reefs: Report
1396	of the Underwater Association, New Series, v. 2, p. 155–193.
1397	TAYLOR, J.D., and LAYMAN, M., 1972, The mechanical properties of bivalve
1398	(Mollusca) shell structures: Palaeontology, v. 15, p. 73-87.: Palaeontology, v. 15,
1399	p. 73–87.
1400	TAYLOR, P.D., and DI MARTINO, E., in press, Why is the tropical Cenozoic fossil

- 1401 record so poor for bryozoans?: Bryozoan Studies Studi di Scienze Naturali.
- 1402 TAYLOR, P.D., and ZABORSKI, P.M., 2002, A Late Cenomanian bryozoan biostrome

1403 from north-eastern Nigeria: Cretaceous Research, v. 23, p. 241–253, doi:

- 1404 10.1006/cres.2002.0308.
- 1405 TOMASCIK, T., MAH, A.J., NONTJI, A., and MOOSA, M.K., 1997, The ecology of the
- 1406 Indonesian seas: Periplus, Hong Kong.
- 1407 UMBGROVE, J.H.F., 1929, Anthozoa van N. O. Borneo: Wetenschappelijke

1408 Mededelingen van de Dienst van de Mijnbouw in Nederlands Indië, v. 9, p. 46–
1409 76, plates 1–5.

- 1410 VAN DE WEERD, A.A., and ARMIN, R.A., 1992, Origin and evolution of the Tertiary
- 1411 hydrocarbon-bearing basins in Kalimantan (Borneo), Indonesia: American
- 1412 Association of Petroleum Geologists, Bulletin, v. 79, p. 1778–1803.

1413	VAN WOESIK, R., HOUK, P., ISECHAL, A.L., IDECHONG, J.W., VICTOR, S., and
1414	GOLBUU, Y., 2012, Climate-change refugia in the sheltered bays of Palau:
1415	Analogs of future reefs: Ecology and Evolution, v. 2, p. 2474–2484, doi:
1416	10.1002/ece3.363.
1417	VAN WOESIK, R., TOMASCIK, T., and BLAKE, S., 1999, Coral assemblages and
1418	physico-chemical characteristics of the Whitsunday Islands: evidence of recent
1419	community changes: Marine Freshwater Research, v. 50, p. 427-440.
1420	VERHEIJ, E., and ERFTEMEIJER, P.L.A., 1993, Distribution of seagrasses and
1421	associated macroalgae in South Sulawesi, Indonesia: Blumea, v. 38, p. 45-64.
1422	VERON, J.E.N., 2000, Corals of the world: Australian Institute of Marine Science.
1423	VINN, O., KIRSIMÄE, K., and TEN HOVE, H. a, 2009, Tube ultrastructure of
1424	Pomatoceros americanus (Polychaeta, Serpulidae): implications for the tube
1425	formation of serpulids: Estonian Journal of Earth Sciences, v. 58, p. 148-152,
1426	doi: 10.3176/earth.2009.2.05.
1427	WALLACE, C., 1999, Staghorn corals of the world: a revision of the coral genus
1428	Acropora (Scleractinia; Astrocoeniina; Acroporidae) worldwide, with emphasis
1429	on morphology, phylogeny and biogeography: CSIRO Publishing, Melbourne.
1430	WIDODO, S., OSCHMANN, W., BECHTEL, A., SACHSENHOFER, R.F., ANGGAYANA, K.,
1431	and PUETTMANN, W., 2010, Distribution of sulfur and pyrite in coal seams from
1432	Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental
1433	conditions: International Journal of Coal Geology, v. 81, p. 151-162, doi:
1434	10.1016/j.coal.2009.12.003.

- WILSON, M.E.J., 2005, Development of Equatorial Delta-Front Patch Reefs during the
 Neogene, Borneo: doi: 10.2110/jsr.2005.010.
- 1437 WILSON, M.E.J., 2008, Global and regional influences on equatorial shallow-marine
- 1438 carbonates during the Cenozoic: Palaeogeography, Palaeoclimatology,
- 1439 Palaeoecology, v. 265, p. 262–274, doi: 10.1016/j.palaeo.2008.05.012.
- 1440 WILSON, M.E.J., 2012, Equatorial carbonates: An Earth systems approach:
- 1441 Sedimentology, v. 59, p. 1–31, doi: 10.1111/j.1365-3091.2011.01293.x.
- 1442 WILSON, M.E.J., and LOKIER, S.W., 2002, Siliciclastic and volcaniclastic influences

1443 on equatorial carbonates: Insights from the Neogene of Indonesia:

1444 Sedimentology, v. 49, p. 583–601.

1445 WILSON, M.E.J., and MOSS, S.J., 1999, Cenozoic palaeogeographic evolution of

Sulawesi and Borneo: Palaeogeography, Palaeoclimatology, Palaeoecology, v.
1447 145, p. 303–337.

- 1448 WILSON, M.E.J., and ROSEN, B.R., 1998, Implications of paucity of corals in the
- 1449 Paleogene of SE Asia: Plate tectonics or centre of origin?, *in* Hall, R. and
- 1450 Holloway, J.D., eds., Biogeography and Geological Evolution of SE Asia:

1451 Backburys Publisher, Leiden, The Netherlands, p. 165–195.

- 1452 WOELKERLING, W.J., IRVINE, L.M., and HARVEY, A.S., 1993, Growth-forms in non-
- 1453 geniculate coralline red algae (Corallinales, Rhodophyta): Australian Systematic
- 1454 Botany, v. 6, p. 277–293.

1455	WRIGHT, P., CHERNS, L., and HODGES, P., 2003, Missing molluscs: Field testing
1456	taphonomic loss in the Mesozoic through early large-scale aragonite dissolution:
1457	Geology, v. 31, p. 211–214, doi: 10.1130/0091-7613(2003)031<0211.
1458	XIE, SP., DESER, C., VECCHI, G. a., MA, J., TENG, H., and WITTENBERG, A.T., 2010,
1459	Global warming pattern formation: Sea surface temperature and rainfall: Journal

1460 of Climate, v. 23, p. 966–986, doi: 10.1175/2009JCLI3329.1.

1461

 FIGURE 1—Location of the Stadion patch reef in A) East Kalimar nearby B) Samarinda city. The Stadion coral carbonates (Stadion CC) two sections C) Stadion CC-1 and D) Stadion CC- 2. FIGURE 2—A) The Samarinda sequence exposes the Miocene pro the Mahakam Delta System. B) Log correlation of measured sections f Stadion coral carbonates. FIGURE 3—Interpretation of the Stadion coral carbonates sections lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates shales = CaS, bioclastic sandstone = BSa, coral platestone = CPI, forar 	
 FIGURE 1—Location of the Stadion patch reef in A) East Kalimar nearby B) Samarinda city. The Stadion coral carbonates (Stadion CC) two sections C) Stadion CC-1 and D) Stadion CC- 2. FIGURE 2—A) The Samarinda sequence exposes the Miocene pro the Mahakam Delta System. B) Log correlation of measured sections f Stadion coral carbonates. FIGURE 3—Interpretation of the Stadion coral carbonates sections lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates shales = CaS, bioclastic sandstone = BSa, coral platestone = CPI, forar 	
 1466 nearby B) Samarinda city. The Stadion coral carbonates (Stadion CC) 1467 two sections C) Stadion CC-1 and D) Stadion CC- 2. 1468 FIGURE 2—A) The Samarinda sequence exposes the Miocene pro 1469 the Mahakam Delta System. B) Log correlation of measured sections f 1470 Stadion coral carbonates. 1471 FIGURE 3—Interpretation of the Stadion coral carbonates sections 1472 lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates 1473 shales = CaS, bioclastic sandstone = BSa, coral platestone = CPI, forantee 	itan, Indonesia,
 two sections C) Stadion CC-1 and D) Stadion CC-2. FIGURE 2—A) The Samarinda sequence exposes the Miocene pro the Mahakam Delta System. B) Log correlation of measured sections f Stadion coral carbonates. FIGURE 3—Interpretation of the Stadion coral carbonates sections lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates shales = CaS, bioclastic sandstone = BSa, coral platestone = CPI, forantical carbonates 	were studied in
 FIGURE 2—A) The Samarinda sequence exposes the Miocene pro the Mahakam Delta System. B) Log correlation of measured sections f Stadion coral carbonates. FIGURE 3—Interpretation of the Stadion coral carbonates sections lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates shales = CaS, bioclastic sandstone = BSa, coral platestone = CPI, forantical carbonates 	
 the Mahakam Delta System. B) Log correlation of measured sections f Stadion coral carbonates. FIGURE 3—Interpretation of the Stadion coral carbonates sections lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates shales = CaS, bioclastic sandstone = BSa, coral platestone = CPl, forant 	gradation of
 Stadion coral carbonates. FIGURE 3—Interpretation of the Stadion coral carbonates sections lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates shales = CaS, bioclastic sandstone = BSa, coral platestone = CPI, forant 	rom the
 FIGURE 3—Interpretation of the Stadion coral carbonates sections lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbonates shales = CaS, bioclastic sandstone = BSa, coral platestone = CPl, forant 	
 1472 lithological units (U1 to U7) and facies, laminated siltstone = LZ, carbo 1473 shales = CaS, bioclastic sandstone = BSa, coral platestone = CPl, form 	, including
1473 shales = CaS, bioclastic sandstone = BSa, coral platestone = CPl, foran	onaceous
	niniferal
1474 packstone = FPa, coral sheetstone = CSh, clay shales = ClS. Red conto	urs indicate
1475 line transects (T1 to T9).	
1476 FIGURE 4 —Facies: A) Laminated siltstone. B) Carbonaceous shall	e. C-D)
1477 Bioclastic sandstone and D) micrograph of thin section showing well s	orted fine-sand
1478 and larger benthic foraminifera. E-F) Coral platestone, E) large tabular	colony of
1479 <i>Progyrosmilia</i> sp. and F) micrograph of thin section showing <i>Nephrole</i>	pidina
1480 <i>ferreroi</i> . G-H) Foraminiferal packstone H) micrograph of thin section s	showing
1481 <i>Nephrolepidina</i> and <i>Amphistegina</i> . I-J) Coral sheetstone showing mult	iple stacks of
1482 thin platy coral colonies and J) detail of larger benthic foraminifera end	crusting on
1483 coral surface of a <i>Pavona</i> sp. Common larger benthic foraminifera incl	ude
1484 <i>Nephrolepidina</i> = Ne, <i>Amphistegina</i> = Am, and <i>Lepidosemicyclina bifid</i>	<i>la</i> = Lb
1485 FIGURE 5 —Facies of the Stadion patch reef, including percentage	s of the main
1486 substrate components and fossil groups. Biotic distribution and abunda	nce of corals.
1487 foraminifers, coralline algae, bryozoans, and mollusks are illustrated, in	

- 1488 main growth forms, taxa or feeding strategy, accordingly. Asterisks (*) indicate the
- 1489 occurrence of the fossil group but preservation issues hampered the estimation of its
- abundance within the facies. Percentages of calcium carbonate (CaCO₃) in the marine
- 1491 facies are shown in the last column.
- 1492 **FIGURE 6**—Representative corals from the Stadion patch reef. A-B) *Porites* sp.1
- 1493 NHMUK AZ6718 from the coral sheetstone facies. A) Fragment of a platy colony of
- 1494 *Porites* sp. 1 and B) Detail of corallites. C-H) some corals from the coral platestone
- 1495 facies: C) Progyrosmilia sp. NHMUK AZ6575. D) Symphyllia recta, NHMUK
- 1496 AZ7214. E) Porites sp. 3, NHMUK AZ7238. F) Galaxea sp. NHMUK AZ6477. G)
- 1497 *Heliopora* sp. NHMUK AZ7230. H) *Acropora* sp. *elegans* group, NHMUK AZ7302.
- 1498 I-O) some corals from the coral sheetstone facies: I) Goniopora planulata, NHMUK
- 1499 AZ6606. J) Leptoseris sp. AZ7329. K) Pachyseris sp. 4, NHMUK AZ6722. L)
- 1500 Pavona cf. varians, NHMUK AZ7351. M) Cyphastrea sp., NHMUK AZ6979. N)
- 1501 Psammocora sp., NHMUK AZ7159. O) Coscinaraea sp. NHMUK AZ6833.
- 1502 **FIGURE 7**—Non-metric multidimensional scaling analysis of A) Coral
- assemblages. B) Larger benthic foraminiferal assemblages. Open symbols correspond
- to Stadion CC-1 and filled symbols to Stadion CC-2.
- 1505 **FIGURE 8**—Representative foraminifera from the Stadion patch reef. Common
- 1506 foraminifers from the coarse fraction (>0.5 mm) include A) Nephrolepidina martini,
- 1507 B) Cycloclypeus annulatus, and C) Lepidosemicyclina bifida. Foraminifers from the
- 1508 fine fraction (>125 um-0.5 mm) include D) Amphistegina sp., E) Operculina sp., F)
- 1509 miliolid, G) *Elphidium* sp., and H) *Cibicidoides* sp.
- 1510 **FIGURE 9**—Representative crustose coralline algae of the Stadion patch reef. A)
- 1511 Neogoniolithon sp. AR274-3. B) Neogoniolithon fosliei, AR262-1. C) Spongites sp.,
- 1512 AR267-1. D) *Lithoporella* sp. AR263D-1.

1513	FIGURE 10—Representative bryozoans from the Stadion patch reef. A)
1514	Cranosina rubeni. B) Steginoporella sp. C) Reptadeonella sp. nov. D) Antropora cf.
1515	subvespertilio.
1516	FIGURE 11—Interpretation of depositional environments of the Stadion patch
1517	reef.
1518	
1519	TABLES CAPTIONS
1520	
1521	TABLE 1 —Principal characteristics of the Stadion coral carbonates, including
1522	facies types, lithologies and main fossil groups.
1523	TABLE 2 —Percentage contribution by the top 24 coral species to the Bray-Curtis
1524	similarity (SIMPER analysis) in species biomass (weight in grams) at the coral
1525	platestone = CPl and coral sheetstone = CSh facies in the Stadion patch reef.
1526	
1527	ELECTRONIC SUPPLEMENTARY MATERIAL
1528	
1529	APPENDICES—List of taxa and percentages of abundance of each fossil group:
1530	A) Corals. B) Larger benthic for aminifera in the fraction > 500 μ m. C) For aminifera
1531	from the fraction >125 – 500 μ m. D) Crustose coralline algae. E) Bryozoans. F)
1532	Mollusks.

Stadion coral carbonates 1

B Stadion coral carbonates 2

U3; BSa U2; CaS T3 T2

Α

Unit Facies type		Lithology	Foraminifers	Corals	Coralline algae	Bryozoans	Mollusks	
7	CIS	Fossil barren clay- shales	Absent	Absent	Absent	Absent	Absent	
6	CSh	Coral sheetstone within a clay-rich matrix	Dominance of elongated forms of <i>Lepidosemicyclina bifida</i> (37%), followed by <i>Amphistegina</i> (30%) and <i>Nephrolepidina</i> (29%). <i>Operculina</i> , <i>Cibicidoides</i> , and <i>Elphidium</i> common in finer fraction; Planktonic foraminifera increase from base to top (<1 to 11%)	Main carbonate-forming group. Highly diverse, 56 species, and well- preserved specimens. Mainly thin-platy corals of <i>Porites</i> sp. 1 (41%), and the agariciids <i>Leptoseris</i> spp. (17%). Most colonies are 1 to 5 mm thick; n=3042	Very abundant crusts, mainly <i>Neogoniolithon</i> spp. (80%) and other mastophoroids, encrusting corals, some protuberant, and some forming foralgaliths; n=25	Fifty-five species. Mostly encrusting (78%) the under surfaces of platy corals as large colonies, up to 10 cm width; <i>Steginoporella</i> sp.1 (21%) is the most common species. Among the erect forms (21%), with <i>Vincularia</i> spp. (8%) as the most common species; n=925	Two fragments of oysters and one gastropod <i>Angaria</i> sp. Poorly preserved specimens; n=3	
5	FPa	Foraminifera packstone	Main carbonate-forming group. Nephrolepidina (63%) dominate. Subordinate Amphistegina (19%) and Lepidosemicyclina (12%). Cycloclypeus present, but in low abundances (3.5%); Planktonic foraminifera absent	Low abundance, very recrystallized, and low species richness, mainly represented by the genus <i>Porites</i> in massive (44%), ramose (30.5%) and platy (10%) forms; n=16	Low abundance, very recrystallized, hard to identify, some <i>Lithophyllum</i> <i>pseudoamphiroa</i> ; n=4	Absent	Absent	
4	CPI	Coral platestone	High diversity. Dominance of Nephrolepidina (45%) and Amphistegina (39%). Some Lepidosemicyclina (13%); No planktonic foraminifera	Main carbonate-forming group. Forty-eight species in 43 genera. Thin-platy forms decreased from the base (82%) to the top (27%); in the middle part, platy-tabular <i>Porites</i> sp.1 (24%) and <i>Progyrosmilia</i> sp. 2 (23%), and small massive <i>Porites</i> sp. 3 (33%) dominate. At the top, phaceloid <i>Galaxea</i> spp. (15%) and ramose <i>Porites</i> sp. 2 (10%) become more abundant; n= 1471	<i>Neogoniolithon sp., Hydrolithon sp.</i> and thick crusts of <i>Spongites</i> encrusting corals, partly with forams; n=6	Absent	Eighteen taxa, including 14 genera. Mostly herbivore gastropods (52%), followed by suspension feeders (28%). Poorly preserved specimens, yet identifiable; n=79	
3	BSa	Bioclastic packstone	Low diversity. Smaller and robust forms of <i>Amphistegina</i> (47%) and <i>Nephrolepidina</i> (39%) dominate. A few <i>Lepidosemicyclina</i> (12%); Planktonic foraminifera present (2%)	Absent	Absent	Absent	Gastropods, including ? <i>Calliostoma</i> sp. Poorly preserved; n=4	
2	CaS	Carbonaceous shale	Absent	Absent	Absent	Absent	Absent	
1	LZ	Laminated siltstone interbedded with mudstone	Absent	Absent	Absent	Absent	Absent	

TABLE 1—Principal characteristics of the Stadion coral carbonates, including facies types, lithologies and main fossil groups.

TABLE 2— Percentage contribution by the top 24 coral species to the Bray-Curtis similarity (SIMPER analysis) in species biomass (weight in grams) at the coral platestone = CPl and coral sheetstone = CSh facies in the Stadion patch reef.

	Coral species	Contrib	SD	Ratio	av. F4, CPl	av. F6, CSh	Cumulative
1	Porites sp.1	0.183	0.132	1.390	728.9	2679.9	0.214
2	Progyrosmilia sp.2	0.066	0.103	0.639	448.9	247.8	0.291
3	Leptoseris cf. explanata	0.063	0.101	0.621	6.6	649.7	0.364
4	Porites sp.3	0.056	0.099	0.569	545.5	-	0.431
5	Cyphastrea cf. divaricata	0.046	0.057	0.805	-	442.6	0.485
6	Pavona cf. varians	0.042	0.053	0.797	-	743.9	0.534
7	Leptoseris sp.7	0.035	0.049	0.710	328.3	-	0.575
8	Psammocora sp.1	0.033	0.046	0.714	-	366.4	0.614
9	Pachyseris sp.4	0.030	0.031	0.973	33.3	429.1	0.649
10	Astreopora sp.1	0.021	0.060	0.355	340.3	-	0.674
11	Astreopora sp.2	0.021	0.021	0.994	245.2	155.9	0.698
12	Goniopora planulata	0.021	0.035	0.596	1.1	288.2	0.723
13	Montipora cf. venosa	0.021	0.032	0.655	252.1	12.4	0.748
14	Galaxea sp.1	0.020	0.035	0.555	215.2	3.9	0.770
15	Merulina sp.1	0.018	0.042	0.437	-	304.8	0.792
16	Progyrosmilia vacua	0.017	0.030	0.547	-	303.3	0.811
17	Fungophyllia sp.1	0.013	0.021	0.629	37.1	88.4	0.827
18	Cyphastrea cf. imbricata	0.013	0.031	0.430	-	143.7	0.843
19	Symphyllia sp.1	0.010	0.014	0.717	103.2	33.7	0.855
20	Porites sp.2	0.010	0.012	0.825	61.6	111.6	0.866
21	Coscinaraea sp.1	0.009	0.020	0.473	4.4	185.6	0.877
22	Alveopora sp.1	0.009	0.013	0.694	100.2	1.1	0.887
23	Stylophora sp.1	0.009	0.017	0.502	59.6	53.7	0.897
24	Goniopora sp.2	0.008	0.019	0.402	64.2	26.2	0.906